«ОСЕННИЕ ФИЛАТОВСКИЕ ЧТЕНИЯ — ВАЖНЫЕ ВОПРОСЫ ДЕТСКОГО ЗДРАВООХРАНЕНИЯ»

ВКЛАД МЕТАБОТРОПНЫХ ГЛУТАМАТНЫХ РЕЦЕПТОРОВ В ИЗМЕНЕНИЯ ВНУТРИКЛЕТОЧНОГО КАЛЬЦИЯ В ПЕРВИЧНОЙ НЕЙРОГЛИАЛЬНОЙ КУЛЬТУРЕ

Жердев А.А.¹, Бакаева З.В.², Сурин А.М.¹

¹Институт общей патологии и патофизиологии, Москва, Россия:

²Национальный медицинский исследовательский центр здоровья детей Минздрава России, Москва, Россия

Ключевые слова: инсульт; эксайтотоксичность; глутамат; нейроны; глутаматные рецепторы; гомеостаз кальция

Актуальность. Перинатальный инсульт, произошедший в период беременности, родов или в первые месяцы жизни, может привести к широкому спектру повреждений, включая двигательные нарушения, речевые расстройства, когнитивные нарушения и эпилептические припадки. Выраженности этих нарушений может варьировать от незначительных задержек развития до тяжёлой инвалидности. Гиперактивация ионотропных глутаматных рецепторов (iGluRs) является одним из ключевых механизмов, лежащих в основе патогенеза инсульта. Недавно установлено, что активность iGluRs может регулироваться метаботропными глутаматными рецепторами (mGluRs), которые стимулируются вместе с iGluRs. Цель: идентифицировать кальциевые сигналы mGluRs первого типа, вызывающие высвобождение Са²⁺ из эндоплазматического ретикулума (ЭПР) и определить их вклад в изменения внутриклеточной концентрации свободного Ca^{2+} ([Ca^{2+}]) при совместной активации iGluRs и mGluRs.

Материалы и методы. Нейроглиальные культуры получали из новорождённых крысят линии Вистар и использовали для флуоресцентно-микроскопических измерений на 11-12 DIV. Изменения $[Ca^{2+}]_i$ регистрировали на микроскопе «Nikon Ti-2», используя Ca^{2+} -индикатор «Fura-2» в буфере, содержащем (мМ): 130 NaCl, 5 KCl, 20 HEPES*Na, 2 $CaCl_2$, 1 $MgCl_2$, 5 глюкозы, рН 7,4. Для оценки вклада индуцированных глутаматом сигналов mGluRs в общее повышение $[Ca^{2+}]_i$ использовали бескальциевый буфер (Ca^{2+} был замещён 0,1 мМ EGTA) и ингибитор эндоплазматической Ca^{2+} -АТФазы тапсигаргин (2,5–5,0 мкМ) для истощения запасов Ca^{2+} в люмене ЭПР. Работа выполнена в соответствии с государственным заданием FGFU-2022-0012.

Результаты. При действии Glu (100 мкМ) около 90% клеток отреагировали быстрым увеличением $[Ca^{2+}]_{;}$. При повторном добавлении Glu, но в бескальциевом буфере, у большинства клеток наблюдался гораздо меньший транзиторный подъём $[Ca^{2+}]_{;}$. Возвращение клеткам Ca^2 -содержащей среды приводило к резкому подъёму $[Ca^{2+}]_{;}$, свидетельствуя об активации механизмов восполнения Ca^{2+} депо ЭПР. У 5–10% клеток Glu вызывал колебательные изменения $[Ca^{2+}]_{;}$, что косвенно свидетельствует об экспрессии рецепторов первого типа mGluR5. Обработка тапсигаргином снижала Glu-индуцированный подъём $[Ca^{2+}]_{;}$ в бескальциевом буфере, подтверждая истощение кальциевых депо ЭПР.

«AUTUMN FILATOV READINGS — IMPORTANT ISSUES OF CHILDREN'S HEALTH»

Заключение. Применение Glu и тапсигаргина в бескальциевом буфере позволяет идентифицировать вклад mGluRs в общее изменение $[Ca^{2+}]_{i}$. В среднем вклад Ca^{2+} , высвобождаемого из ЭПР при совместной активации iGluRs и mGluRs, в общее повышение $[Ca^{2+}]_i$ не превышает 20%.

* * *