Sleep disorders as a trigger for cardiovascular pathology
https://doi.org/10.46563/1560-9561-2024-27-6-446-451
EDN: mnghbc
Abstract
Introduction. Sleep disorders are associated with the onset and progression of cardiovascular diseases, including hypertension, stroke, arrhythmias, coronary heart disease, and heart failure. However, awareness of the prevalence of sleep disorders and their impact on comorbidities, including cardiovascular diseases, remains insufficient.
The aim of the review: to determine the importance of early detection of sleep disorders for improving the effectiveness of prevention of cardiovascular diseases. A literature search was conducted on the topic: sleep disorders as a trigger of cardiovascular pathology. Significant links have been established between sleep disorders and the development of various forms of pathology of the cardiovascular system, both in adults and children, which necessitates timely sleep screening.
Conclusion. A certain connection between sleep disorders and cardiovascular diseases necessitates increased awareness in doctors regarding sleep disorders for the prevention of diseases of the cardiovascular system.
Contribution:
Kozhevnikova O.V. — concept and design of the study;
Tikhonovskiy P.A., Blazhievskaya T.O., Kustova E.A. — data collection, processing, writing the text;
Kozevnikova O.V. — research concept, editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: November 21, 2024
Accepted: December 06, 2024
Published: December 25, 2024
About the Authors
Pavel A. TikhonovskiyRussian Federation
Olga V. Kozevnikova
Russian Federation
MD, PhD, DSc, prof., head of the Department of instrumental diagnostics, chief researcher at the Laboratory of radiation and instrumental diagnostics, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: olgafd2010@mail.ru
Tamara O. Blazhievskaya
Russian Federation
Elena A. Kustova
Russian Federation
References
1. Lv R., Liu X., Zhang Y., Dong N., Wang X., He Y., et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target Ther. 2023; 8(1): 218. https://doi.org/ 10.1038/s41392-023-01496-3
2. Platon A.L., Stelea C.G., Boișteanu O., Patrascanu E., Zetu I.N., Roșu S.N., et al. An update on obstructive sleep apnea syndrome – a literature review. Medicina (Kaunas). 2023; 59(8): 1459. https://doi.org/10.3390/medicina59081459
3. Baker-Smith C.M., Isaiah A., Melendres M.C., Mahgerefteh J., Lasso-Pirot A., Mayo S., et al. Sleep-disordered breathing and cardiovascular disease in children and adolescents: a scientific statement from the American Heart Association. J. Am. Heart Assoc. 2021; 10(18): e022427. https://doi.org/10.1161/JAHA.121.022427
4. Kirk V.G., Edgell H., Joshi H., Constantin E., Katz S.L., MacLean J.E. Cardiovascular changes in children with obstructive sleep apnea and obesity after treatment with noninvasive ventilation. J. Clin. Sleep Med. 2020; 16(12): 2063–71. https://doi.org/10.5664/jcsm.8760
5. Meira E., Cruz M., Salles C., Seixas L.D., Elia C., Rocha I., et al. Comorbid insomnia and sleep apnea in children: a preliminary explorative study. J. Sleep Res. 2023; 32(1): e13705. https://doi.org/10.1111/jsr.13705
6. Lechat B., Appleton S., Melaku Y.A., Hansen K., McEvoy R.D., Adams R., et al. The association of co-morbid insomnia and sleep apnea with prevalent cardiovascular disease and incident cardiovascular events. J. Sleep Res. 2022; 31(5): e13563. https://doi.org/10.1111/jsr.13563
7. Poluektov M.G. Diagnostics and Treatment of Sleep Disorders [Diagnostika i lechenie rasstroistv sna]. Moscow: MEDpress-inform; 2021. (in Russian)
8. Laczay B., Faulx M.D. Obstructive sleep apnea and cardiac arrhythmias: a contemporary review. J. Clin. Med. 2021; 10(17): 3785. https://doi.org/10.3390/jcm10173785
9. Yeghiazarians Y., Jneid H., Tietjens J.R., Redline S., Brown D.L., El-Sherif N., et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021; 144(3): e56–e67. https://doi.org/10.1161/CIR.0000000000000988
10. Jehan S., Myers A.K., Zizi F., Pandi-Perumal S.R., Jean-Louis G., McFarlane S.I. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med. Disord. 2018; 2(3): 52–8.
11. Salman L.A., Shulman R., Cohen J.B. Obstructive sleep apnea, hypertension, and cardiovascular risk: epidemiology, pathophysiology, and management. Curr. Cardiol. Rep. 2020; 22(2): 6. https://doi.org/10.1007/s11886-020-1257-y
12. Tietjens J.R., Claman D., Kezirian E.J., De Marco T., Mirzayan A., Sadroonri B., et al. Obstructive sleep apnea in cardiovascular disease: A review of the literature and proposed multidisciplinary clinical management strategy. J. Am. Heart Assoc. 2019; 8(1): e010440. https://doi.org/10.1161/JAHA.118.010440
13. Ahmed A.M., Nur S.M., Xiaochen Y. Association between obstructive sleep apnea and resistant hypertension: systematic review and meta-analysis. Front. Med. (Lausanne). 2023; 10: 1200952. https://doi.org/10.3389/fmed.2023.1200952
14. Falla C., Young A., Pope A., O’Driscoll D.M. Obstructive sleep apnea during REM sleep: effects on morning and evening blood pressure. Sleep Med. 2023; 46(3): zsac259. https://doi.org/10.1093/sleep/zsac259
15. Kang K.T., Chiu S.N., Lee C.H., Lin M.T., Hsu W.C. Effect of adenotonsillectomy on blood pressure in children with obstructive sleep apnea: a meta-analysis. Sleep Med. 2021; 84: 334–42. https://doi.org/10.1016/j.sleep.2021.06.017
16. Zhang D., Ma Y., Xu J., Yi F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): A dose-response meta-analysis. Medicine (Baltimore). 2022; 101(30): e29443. https://doi.org/10.1097/MD.0000000000029443
17. Moula A.I., Parrini I., Tetta C., Lucà F., Parise G., Rao C.M., et al. Obstructive sleep apnea and atrial fibrillation. J. Clin. Med. 2022; 11(5): 1242. https://doi.org/10.3390/jcm11051242
18. Wu T.T., Zou Y.L., Xu K.D., Jiang X.R., Zhou M.M., Zhang S.B., et al. Insomnia and multiple health outcomes: umbrella review of meta-analyses of prospective cohort studies. Public Health. 2023; 215: 66–74. https://doi.org/10.1016/j.puhe.2022.11.021
19. Kang S.J., Kwon Y.W. Right atrial deformation mechanics in children with adenotonsillar hypertrophy. J. Cardiovasc. Imaging. 2018; 26(4): 201–13. https://doi.org/10.4250/jcvi.2018.26.e26
20. Geovanini G.R., Lorenzi-Filho G. Cardiac rhythm disorders in obstructive sleep apnea. J. Thorac. Dis. 2018; 10(Suppl. 34): 4221–30. https://doi.org/10.21037/jtd.2018.12.63
21. Teo Y.H., Han R., Leong S., Teo Y.N., Syn N.L., Wee C.F., et al. Prevalence, types and treatment of bradycardia in obstructive sleep apnea – a systematic review and meta-analysis. Sleep Med. 2022; 89: 104–13. https://doi.org/10.1016/j.sleep.2021.12.003
22. Sonsuwan N., Houngsuwannakorn K., Chattipakorn N., Sawanyawisuth K. An association between heart rate variability and pediatric obstructive sleep apnea. Ital. J. Pediatr. 2024; 50(1): 54. https://doi.org/10.1186/s13052-024-01576-2
23. Lee L.A., Chuang H.H., Hsieh H.S., Wang C.Y., Chuang L.P., Li H.Y., et al. Using sleep heart rate variability to investigate the sleep quality in children with obstructive sleep apnea. Front. Public Health. 2023; 11: 1103085. https://doi.org/10.3389/fpubh.2023
24. Isaiah A., Bertoni D., Pereira K.D., Diaz-Abad M., Mitchell R.B., Das G. Treatment-related changes in heart rate variability in children with sleep apnea. Otolaryngol. Head Neck Surg. 2020; 162(5): 737–45. https://doi.org/ 10.1177/0194599820907882
25. Kalaydzhiev P., Poroyliev N., Somleva D., Ilieva R., Markov D., Kinova E., et al. Sleep apnea in patients with exacerbated heart failure and overweight. Sleep Med. 2023; 5: 100065. https://doi.org/10.1016/j.sleepx.2023.100065
26. Huang B., Huang Y., Zhai M., Zhou Q., Ji S., Liu H., et al. J. Association of sex with cardiovascular outcomes in heart failure patients with obstructive or central sleep apnea. J. Am. Heart Assoc. 20245; 13(5): e031186. https://doi.org/10.1161/JAHA.123.031186
27. Venkataraman S., Karim S., Rajendran A., Chahal C.A.A., Somers V.K. Sleep disordered breathing in hypertrophic cardiomyopathy-current state and future directions. J. Clin. Med. 2020; 9(4): 901. https://doi.org/10.3390/jcm9040901
28. Lebedev V.V., Kozhevnikova O.V., Logacheva O.S., Akhmedova E.E., Filimonova I.K., Basargina E.N., et al. Comorbidity of sleep disorders in children with cardiomyopathies. Voprosy prakticheskoy pediatrii. 2020; 15(5): 24–33. https://doi.org/10.20953/1817-7646-2020-5-24-33 https://elibrary.ru/wjswyi (in Russian)
29. Tong J., Yu Q., Li Y., Du J., Qiu J. Obstructive sleep apnea and cardiovascular events in acute coronary syndrome: a meta-analysis. Coron. Artery. Dis. 2023; 34(3): 177–84. https://doi.org/10.1097/MCA.0000000000001207
30. Sun H., Du Z., Yu H., Hu C., Du Y., Qin Y. Excessive daytime sleepiness is associated with increased residual cardiovascular risks among coronary artery disease patients with obstructive sleep apnea. Sleep Med. 2024; 115: 131–6. https://doi.org/10.1016/j.sleep.2024.02.004
31. Sigurdardottir F.D., Bertisch S.M., Reid M.L., deFilippi C.R., Lima J.A.C., Redline S., et al. Association between insomnia phenotypes and subclinical myocardial injury: the multi-ethnic study of atherosclerosis. Sleep. 2023; 46(4): zsac318. https://doi.org/10.1093/sleep/zsac318
32. Hanlon C.E., Binka E., Garofano J.S., Sterni L.M., Brady T.M. The association of obstructive sleep apnea and left ventricular hypertrophy in obese and overweight children with history of elevated blood pressure. J. Clin. Hypertens. (Greenwich). 2019; 21(7): 984–90. https://doi.org/10.1111/jch.13605
33. Gump B.B., Heffernan K.S., Bendinskas K., Hruska B., MacKenzie J.A., Park A., et al. Association of sleep quality with greater left ventricular mass in children aged 9 to 11 years. Psychosom. Med. 2021; 83(3): 265–73. https://doi.org/10.1097/PSY.0000000000000921
34. Pan X.L., Nie L., Zhao S.Y., Zhang X.B., Zhang S., Su Z.F. The association between insomnia and atherosclerosis: a brief report. Nat. Sci. Sleep. 2022; 14: 443–8. https://doi.org/10.2147/NSS.S336318
35. Smith D.F., Schuler C.L., Hossain M.M., Huang G., McConnell K., Urbina E.M., et al. Early atherosclerotic inflammatory pathways in children with obstructive sleep apnea. J. Pediatr. 2021; 239: 168–74. https://doi.org/10.1016/j.jpeds.2021.08.031
36. Kontos A., Willoughby S., Lushington K., Martin J., Wabnitz D., Dorrian J., et al. Increased platelet aggregation in children and adolescents with sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2020; 202(11): 1560–6. https://doi.org/10.1164/rccm.201911-2229OC
37. Maloney M.A., Ward S.L.D., Su J.A., Durazo-Arvizu R.A., Breunig J.M., Okpara D.U., et al. Prevalence of pulmonary hypertension on echocardiogram in children with severe obstructive sleep apnea. J. Clin. Sleep Med. 2022; 18(6): 1629–37. https://doi.org/10.5664/jcsm.9944
38. Burns A.T., Hansen S.L., Turner Z.S., Aden J.K., Black A.B., Hsu D.P. Prevalence of pulmonary hypertension in pediatric patients with obstructive sleep apnea and a cardiology evaluation: a retrospective analysis. J. Clin. Sleep Med. 2019; 15(8): 1081–7. https://doi.org/10.5664/jcsm.7794
39. Bhat S., Chokroverty S. Sleep disorders and COVID-19. Sleep Med. 2022; 91: 253–61. https://doi.org/10.1016/j.sleep.2021.07.021
40. Veazie S., Lafavor B., Vela K., Young S., Sayer N.A., Carlson K.F., et al. Mental health outcomes of adults hospitalized for COVID-19: A systematic review. J. Affect. Disord. Rep. 2022; 8: 100312. https://doi.org/10.1016/j.jadr.2022.100312
41. Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Polyakov D.S., Belenkov Y.N., Konradi A.O., et al. Newly diagnosed diseases and the frequency of their occurrence in patients after a new coronavirus infection. Results of an international register “dynamics analysis of comorbidities in Sars-CoV-2 survivors (activ SARS-CoV-2)” (12-month follow-up). Rossiiskiy kardiologicheskiy zhurnal. 2023; 28(4): 5424. https://doi.org/10.15829/1560-4071-2023-5424 https://elibrary.ru/tpvhtp (in Russian)
42. Sameema V.V., Soni K., Deora S., Sharma J.B., Choudhury B., Kaushal D., et al. Assessment of preoperative and postoperative cardiac function in children with adenotonsillar hypertrophy: a prospective cohort study. Eur. Arch. Otorhinolaryngol. 2022; 279(6): 3013–9. https://doi.org/10.1007/s00405-022-07255-4
43. Hawkins S., Huston S., Campbell K., Halbower A. High-flow, heated, humidified air via nasal cannula treats CPAP-intolerant children with obstructive sleep apnea. J. Clin. Sleep Med. 2017; 13(8): 981–9. https://doi.org/10.5664/jcsm.6700
44. Seidel M., Kiziler M.F., Matiakis M., Bertram S., Wang S., Seibert F.S., et al. Predictors of blood pressure response to continuous positive airway pressure treatment in patients with sleep apnea. J. Hypertens. 2024; 42(5): 777–82. https://doi.org/10.1097/HJH.0000000000003694
45. Affas Z., Affas S., Tabbaa K. Continuous positive airway pressure reduces the incidence of atrial fibrillation in patients with obstructive sleep apnea: a meta-analysis and systematic review. Spartan Med. Res. J. 2022; 7(2): 34521. https://doi.org/10.51894/001c.34521
Review
For citations:
Tikhonovskiy P.A., Kozevnikova O.V., Blazhievskaya T.O., Kustova E.A. Sleep disorders as a trigger for cardiovascular pathology. Russian Pediatric Journal. 2024;27(6):446-451. (In Russ.) https://doi.org/10.46563/1560-9561-2024-27-6-446-451. EDN: mnghbc