Preview

Russian Pediatric Journal

Advanced search

Changes in external respiration in patients with cystic fibrosis with various infectious pathogens and structural damage to the lungs

https://doi.org/10.46563/1560-9561-2023-26-1-14-21

EDN: qzgugc

Abstract

The progression of lung failure in children with cystic fibrosis (CF) is associated with chronic lung infection (Staphylococcus aureus, Pseudomonas aeruginosa, Achromobacter spp., etc.). Functional pulmonary tests (PFTs), spirometry and body plethysmography, computed tomography (CT) of the lungs and analysis of the lung microbiota are used for monitoring of lung condition of CF patients. Several studies have been devoted to assessing the correlation of structural changes in CT and pulmonary function tests (PFT), but at the moment there is not enough data on the relationship of these indicators and their differences depending on the respiratory microbiota in CF children in the Russian population.

Materials and methods. Data was collected for CF 8–17.9 years children patients. We retrospectively analyzed genotype, body mass index, results of PFTs and CT scan of the chest (score by the Brody scale), deep throat cultures in all patients, and the capillary blood gas — in 56 children.

Results. Significant correlations between functional tests and structural changes in the lungs were found. A trend towards impairment of PFTs and CT scores with age due to infectious pathogens was shown, and the most significant negative impact was exerted by the mucoid species Pseudomonas aeruginosa and, especially, Achromobacter spp. The last one was associated with the worst lung parameters in CF children.

Conclusion. Pirometry, body plethysmography, and CT of the lungs are necessary for a comprehensive assessment of the lung condition, and a study of the lung microbiome due to its influence on structural and function changes in patients with CF.

Contribution:
Bystrova S.G., Simonova O.I. — research concept and design of the study;
Bystrova S.G., Kustova O.V., Akhmedova E.E. — collection and processing of material;
Bystrova S.G. — statistical processing;
Bystrova S.G., Lazareva A.V. — writing the text;
Simonova O.I. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: December 06, 2022
Accepted: January 17, 2023
Published: February 28, 2023

About the Authors

Serafima G. Bystrova
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

PhD student in the Department of Pediatrics and Pediatric Rheumatology, N.F. Filatov Clinical Institute for Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University).

e-mail: cerafima.bystrova@yandex.ru 



Olga I. Simonova
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation


Olga V. Kustova
National Medical Research Center for Children’s Health
Russian Federation


Elina E. Akhmedova
National Medical Research Center for Children’s Health
Russian Federation


Anna V. Lazareva
National Medical Research Center for Children’s Health
Russian Federation


References

1. Kapnadak S.G., Dimango E., Hadjiliadis D., Hempstead S.E., Tallarico E., Pilewski J.M., et al. Cystic Fibrosis Foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. J. Cyst. Fibros. 2020; 19(3): 344–54. https://doi.org/10.1016/j.jcf.2020.02.015

2. Kondrat’eva E.I., Krasovskiy S.A., Starinova M.A., Voronkova A.Yu., Amelina E.L., Kashirskaya N.Yu., et al. Register of Patients with Cystic Fibrosis in the Russian Federation, 2020 [Registr patsientov s mukovistsidozom v Rossiyskoy Federatsii, 2020]. Moscow: Medpraktika-M; 2022. (in Russian)

3. Garcia B., Flume P.A. Pulmonary complications of cystic fibrosis. Semin. Respir. Crit. Care Med. 2019; 40(6): 804–9. https://doi.org/10.1055/s-0039-1697639

4. Budden K.F., Shukla S.D., Rehman S.F., Bowerman K.L., Keely S., Hugenholtz P., et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 2019; 7(10): 907–20. https://doi.org/10.1016/S2213-2600(18)30510-1

5. Cuthbertson L., Walker A.W., Oliver A.E., Rogers G.B., Rivett D.W., Hampton T.H., et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020; 8(1): 45. https://doi.org/10.1186/s40168-020-00810-3

6. Françoise A., Héry-Arnaud G. The microbiome in cystic fibrosis pulmonary disease. Genes. (Basel). 2020; 11(5): 536. https://doi.org/10.3390/genes11050536

7. Blanchard A.C., Waters V.J. Microbiology of cystic fibrosis airway disease. Semin. Respir. Crit. Care Med. 2019; 40(6): 727–36. https://doi.org/10.1055/s-0039-1698464

8. De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020; 109(5): 893–9. https://doi.org/10.1111/apa.15155

9. Polgreen P.M., Comellas A.P. Clinical phenotypes of cystic fibrosis carriers. Annu. Rev. Med. 2022; 73: 563–74. https://doi.org/10.1146/annurev-med-042120-020148

10. Smirnov I.E., Kucherenko A.G., Egorov M.S., Smirnova G.I., Urtnasan Tsevegmid, Simonova O.I., et al. Matrix metalloproteinases in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(3): 145–51. https://doi.org/10.18821/1560-9561-2018-21-3-145-151 (in Russian)

11. Cohen-Cymberknoh M., Kerem E., Ferkol T., Elizur A. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013; 68(12): 1157–62. https://doi.org/10.1136/thoraxjnl-2013-203204

12. Carmody L.A., Zhao J., Schloss P.D., Petrosino J.F., Murray S.,Young V.B., et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann. Am. Thorac. soc. 2013; 10(3): 179–87. https://doi.org/10.1513/annalsats.201211-107oc

13. Lukina O.F. Pulmonary function tests in children and adolescents. Prakticheskaya pul’monologiya. 2017; (4): 39–44. (in Russian)

14. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., et al. Standardization of spirometry 2019 update. Am. J. Respir. Crit. Care Med. 2019; 200(8): 70–88. https://doi.org/10.1164/rccm.201908-1590ST

15. Hall G.L., Filipow N., Ruppel G., Okitika T., Thompson B., Kirkby J., et al. Official ERS technical standard: Global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021; 57(3): 2000289. https://doi.org/10.1183/13993003.00289-2020

16. Chuchalin A.G., Aysanov Z.R., Chikina S.Yu., Chernyak A.V., Kalmanova E.N. Federal guidelines of Russian Respiratory Society on spirometry. Pul’monologiya. 2014; (6): 11–24. (in Russian)

17. Brody A.S., Klein J.S., Molina P.L., Quan J., Bean J.A., Wilmott R.W. High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J. Pediatr. 2004; 145(1): 32–8. https://doi.org/10.1016/j.jpeds.2004.02.038

18. Calder A.D., Bush A., Brody A.S., Owens C.M. Scoring of chest CT in children with cystic fibrosis: state of the art. Pediatr. Radiol. 2014; 44(12): 1496–506. https://doi.org/10.1007/s00247-013-2867-y

19. Fretzayas A., Loukou I., Moustaki M., Douros K. Correlation of computed tomography findings and lung function in children and adolescents with cystic fibrosis. World J. Pediatr. 2021; 17(3): 221–6. https://doi.org/ 10.1007/s12519-020-00388-8

20. Rosenow T., Oudraad M.C., Murray C.P., Turkovic L., Kuo W., de Bruijne M., et al. PRAGMA-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2015; 191(10): 1158–65. https://doi.org/10.1164/rccm.201501-0061OC

21. Amelina E.L., Marchenkov Ya.V., Chernyak A.V., Krasovskiy S.A. Computed tomography scoring in adults with cystic fibrosis (CF): correlation with clinical and functional measurements. Pul’monologiya. 2009; (1): 59–66. https://doi.org/10.18093/0869-0189-2009-0-1-59-66 (in Russian)

22. Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Semenov A.N., Lazareva A.V., et al. Diversity and hazard of respiratory infection of Achromobacter spp. in cystic fibrosis patients. Pul’monologiya. 2015; 25(4): 389–402. https://doi.org/10.18093/0869-0189-2015-25-4-389-402 (in Russian)

23. Rosenfeld M., Ramsey B.W., Gibson R.L. Pseudomonas acquisition in young patients with cystic fibrosis: pathophysiology, diagnosis, and management. Curr. Opin. Pulm. Med. 2003; 9(6): 492–7. https://doi.org/10.1097/00063198-200311000-00008

24. Farrell P.M., Collins J., Broderick L.S., Rock M.J., Li Z., Kosorok M.R., et al. Association between mucoid Pseudomonas infection and bronchiectasis in children with cystic fibrosis. Radiology. 2009; 252(2): 534–43. https://doi.org/10.1148/radiol.2522081882

25. Lyczak J.B., Cannon C.L., Pier G.B. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 2002; 15(2): 194–222. https://doi.org/10.1128/CMR.15.2.194-222.2002

26. Pavlinova E.B., Mingairova A.G., Safonova T.I., Kirshina I.A., Zakirova Z.A., Korneeva T.Yu., et al. Clinical significance of lung microbiota and efficiency of the inhaled antibacterial therapy of cystic fibrosis in children. Rossiyskiy vestnik perinatologii i pediatrii. 2019; (1): 68–75. https://doi.org/10.21508/1027-4065-2019-64-1-68-75 (in Russian)

27. De Baets F., Schelstraete P., Van Daele S., Haerynck F., Vaneechoutte M. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J. Cyst. Fibros. 2007; 6(1): 75–8. https://doi.org/10.1016/j.jcf.2006.05.011

28. Thomas M., Raja M., Albakri M., Najim M., Chandra P., Allangawi M. CT score and correlation with lung function and microbiology of adult patients with cystic fibrosis with predominant I1234V genotype in Qatar. Qatar. Med. J. 2020; 2020(1): 4. https://doi.org/10.5339/qmj.2020.4

29. de Jong P.A., Nakano Y., Lequin M.H., Mayo J.R., Woods R., Paré P.D., et al. Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur. Respir. J. 2004; 23(1): 93–7. https://doi.org/10.1183/09031936.03.00006603

30. Smirnov I.E., Tarasova O.V., Lukina O.F., Kustova O.V., Sorokina T.E., Simonova O.I. Structural and functional state of the lungs in cystic fibrosis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(2): 11–7. (in Russian)

31. Lauwers E., Snoeckx A., Ides K., Van Hoorenbeeck K., Lanclus M., De Backer W., et al. Functional respiratory imaging in relation to classical outcome measures in cystic fibrosis: a cross-sectional study. BMC Pulm. Med. 2021; 21(1): 256. https://doi.org/10.1186/s12890-021-01622-3

32. Dressel H., Filser L., Fischer R., Marten K., Müller-Lisse U., de la Motte D., et al. Lung diffusing capacity for nitric oxide and carbon monoxide in relation to morphological changes as assessed by computed tomography in patients with cystic fibrosis. BMC Pulm. Med. 2009; 9: 30. https://doi.org/10.1186/1471-2466-9-30

33. Bortoluzzi C.F., Volpi S., D’Orazio C., Tiddens H.A., Loeve M., Tridello G., et al. Bronchiectases at early chest computed tomography in children with cystic fibrosis are associated with increased risk of subsequent pulmonary exacerbations and chronic pseudomonas infection. J. Cyst. Fibros. 2014; 13(5): 564–71. https://doi.org/10.1016/j.jcf.2014.03.006

34. Planet P.J. Adaptation and evolution of pathogens in the cystic fibrosis lung. J. Pediatric Infect. Dis. Soc. 2022; 11(Suppl. 2): 23–31. https://doi.org/10.1093/jpids/piac073

35. Huang L., Lai H.J., Antos N., Rock M.J., Asfour F., Howenstine M., et al. Defining and identifying early-onset lung disease in cystic fibrosis with cumulative clinical characteristics. Pediatr. Pulmonol. 2022; 57(10): 2363–73. https://doi.org/10.1002/ppul.26040

36. Postek M., Walicka-Serzysko K., Milczewska J., Sands D. What is most suitable for children with cystic fibrosis-the relationship between spirometry, oscillometry, and multiple breath nitrogen washout. Front. Pediatr. 2022; 9: 692949. https://doi.org/10.3389/fped.2021.692949

37. Wüllner D., Gesper M., Haupt A., Liang X., Zhou P., Dietze P., et al. Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob. Agents Chemother. 2022; 66(1): e0087821. https://doi.org/10.1128/AAC.00878-21

38. Ciet P., Bertolo S., Ros M., Casciaro R., Cipolli M., Colagrande S., et al. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the “iMAging managEment of cySTic fibROsis” (MAESTRO) consortium. Eur. Respir. Rev. 2022; 31(163): 210173. https://doi.org/10.1183/16000617.0173-2021


Review

For citations:


Bystrova S.G., Simonova O.I., Kustova O.V., Akhmedova E.E., Lazareva A.V. Changes in external respiration in patients with cystic fibrosis with various infectious pathogens and structural damage to the lungs. Russian Pediatric Journal. 2023;26(1):14-21. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-1-14-21. EDN: qzgugc

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)