Preview

Russian Pediatric Journal

Advanced search

Changes in bone mineral density in children with autoimmune hepatitis on the background of immunosuppressive therapy

https://doi.org/10.46563/1560-9561-2025-28-1-41-46

EDN: qwddhm

Abstract

Introduction. The chronic course of autoimmune hepatitis requires long-term immunosuppressive therapy, which can lead to side effects such as impairement of bone mineral density (BMD). Currently, there are no data assessing bone mineralization in children with autoimmune hepatitis.

Aim. To determine the bone mineral density by densitometry and bone remodelling biochemical markers in children with autoimmune hepatitis.

Materials and methods. The study included 41 child with autoimmune hepatitis. 18 patients were diagnosed for the first time and received no treatment before admission, 15 children took glucocorticosteroids up to 6 months and 8 patients received them for 6 months or more. The study required clinical: age and sex of patients, duration both of the disease and treatment, body mass index, laboratory (ALT, AST, total immunoglobulin G, osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), βCrossLaps, calcium, phosphorus, parathormone, vitamin D), instrumental examination (lumbar radiodensitometry, liver elastography).

Results. Children with autoimmune hepatitis at the age of 16 years and older had lower densitometry Z-score (p = 0.015). There was no statistically significant difference between bone mineral density Z-score and the treatment duration. BMD Z-score was established to correlate with P1NP in blood serum (p = 0.035) and osteocalcin (p = 0.026).

Conclusion. Autoimmune hepatitis is a chronic liver disease, associated with the risk for bone density mineral disorders, including in children. This requires timely assessment of one remodelling state, as well as calcium and vitamin D prescription for concomitant treatment.

Contribution:
Parakhina D.V., Movsisyan G.B., Potapov A.S. — research concept and design of the study;
Parakhina D.V., Movsisyan G.B., Semikina E.L. — collection and processing of material;
Parakhina D.V., Movsisyan G.B. — writing the text;
Fisenko A.P. — editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study was conducted within the framework of the state assignment of the Ministry of Health of the Russian Federation, No. 122040800225-4.

Conflict of interest. The authors declare no conflict of interest.

Received: December 20, 2024
Accepted: January 30, 2025
Published: February 28, 2025

About the Authors

Daria V. Parakhina
National Medical Research Center for Children’s Health
Russian Federation

Pediatrician, gastroenterology department, junior researcher, laboratory of scientific foundations of pediatric gastroenterology and hepatology, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation

e-mail: dvparakhina@gmail.com



Goar B. Movsisyan
National Medical Research Center for Children’s Health
Russian Federation


Aleksandr S. Potapov
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University
Russian Federation


Elena L. Semikina
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University
Russian Federation


Andrey P. Fisenko
National Medical Research Center for Children’s Health
Russian Federation


References

1. Luo J., Zhang Y., Fu Y., Huang Y., Zou Z., Han L., et al. The regulation of bone metabolism by the liver. Nat. Cell Sci. 2024; 2(1): 1–9. https://doi.org/10.61474/ncs.2023.00018

2. Schmidt T., Schmidt C., Strahl A., Mussawy H., Rolvien T., Jandl N.M., et al. A System to determine risk of osteoporosis in patients with autoimmune hepatitis. Clin. Gastroenterol. Hepatol. 2020; 18(1): 226–33.e3. https://doi.org/10.1016/j.cgh.2019.05.043

3. Ionele C.M., Turcu-Stiolica A., Subtirelu M.S., Ungureanu B.S., Cioroianu G.O., Rogoveanu I. A systematic review and meta-analysis on metabolic bone disease in patients with primary sclerosing cholangitis. J. Clin. Med. 2022; 11(13): 3807. https://doi.org/10.3390/jcm11133807

4. Danford C.J., Trivedi H.D., Bonder A. Bone health in patients with liver diseases. J. Clin. Densitom. 2020; 23(2): 212–22. https://doi.org/10.1016/j.jocd.2019.01.004

5. Prashnova M.K., Raikhelson K.L., Borisov A.A., Marchenko N.V., Baranovskiy A.Yu. Bone metabolism, bone mineral density and absolute risk of bone fractures in patients with autoimmune liver diseases. Doktor.Ru. 2015; (2-1): 29–33. https://elibrary.ru/ubelhl (in Russian)

6. Mieli-Vergani G., Vergani D., Baumann U., Czubkowski P., Debray D., Dezsofi A., et al. Diagnosis and management of pediatric autoimmune liver disease: ESPGHAN hepatology committee position statement. J. Pediatr. Gastroenterol. Nutr. 2018; 66(2): 345–60. https://doi.org/10.1097/MPG.0000000000001801

7. Mack C.L., Adams D., Assis D.N., Kerkar N., Manns M.P., Mayo M.J., et al. Diagnosis and management of autoimmune hepatitis in adults and children. Hepatology. 2020; 72(2): 671–722. https://doi.org/10.1002/hep.31065

8. Muratori L., Lohse A.W., Lenzi M. Diagnosis and management of autoimmune hepatitis. BMJ. 2023; 380: e070201. https://doi.org/10.1136/bmj-2022-070201

9. Chen M., Fu W., Xu H., Liu C.J. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev. 2023; 70: 54–66. https://doi.org/10.1016/j.cytogfr.2023.03.002

10. Chotiyarnwong P., McCloskey E.V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 2020; 16(8): 437–47. https://doi.org/10.1038/s41574-020-0341-0

11. Lohse A.W., Sebode M., Jørgensen M.H., Ytting H., Karlsen T.H., Kelly D., et al. Second-line and third-line therapy for autoimmune hepatitis. Group. J. Hepatol. 2020; 73(6): 1496–506. https://doi.org/10.1016/j.jhep.2020.07.023

12. Ramonet M., Ramirez-Rodriguez N., Chávez F.Á., Arregui M.C. Autoimmune hepatitis in pediatrics, a review. Arch. Argent. Pediatr. 2022; 120(4): 281–7. https://doi.org/10.5546/aap.2022.eng.281

13. Voulgaridou G., Papadopoulou S.K., Detopoulou P., Tsoumana D., Giaginis C., Kondyli F.S., et al. Vitamin D and calcium in osteoporosis, and the role of bone turnover markers: a narrative review of recent data from RCTs. Diseases. 2023; 11(1): 29. https://doi.org/10.3390/diseases11010029

14. Shaker J.L., Deftos L. Calcium and Phosphate Homeostasis. In: Feingold K.R., Anawalt B., Blackman M.R., eds. Endotext. South Darmouth; 2000.

15. Yang Y.J., Kim D.J. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int. J. Mol. Sci. 2021; 22(5): 2604. https://doi.org/10.3390/ijms22052604

16. Pop T.L., Sîrbe C., Benţa G., Mititelu A., Grama A. The role of vitamin D and vitamin D binding protein in chronic liver diseases. Int. J. Mol. Sci. 2022; 23(18): 10705. https://doi.org/10.3390/ijms231810705

17. Bozso B., Mogyorossy S., Tornai D. THU-106-YI Prospective European reference network registry (R-LIVER) supports improvement in bone disease care delivery at local level for patients with autoimmune liver diseases and enables detailed description of risk elements. J. Hepatol. 2024; 80: S313. https://doi.org/10.1016/S0168-8278(24)01091-2

18. Maitlall J. Autoimmune hepatitis may increase risk for osteoporotic fractures. Clin. Advis. 2023. Available at: https://link.gale.com/apps/doc/A758686371/AONE?u=anon~e066fff&sid=googleScholar&xid=d4b2e44d

19. Lim J., Kim Y.J., Kim S., Choi J. Increased risk of osteoporotic fracture in patients with autoimmune hepatitis. Am. J. Gastroenterol. 2024; 119(1): 127–37. https://doi.org/10.14309/ajg.0000000000002354

20. Parés A., Guañabens N. Bone health in patients with autoimmune liver diseases. In: Autoimmune Liver Disease. John Wiley & Sons; 2020: 219–32. https://doi.org/10.1002/9781119532637.ch12

21. De Martinis M., Allegra A., Sirufo M.M., Tonacci A., Pioggia G., Raggiunti M., et al. Vitamin D deficiency, osteoporosis and effect on autoimmune diseases and hematopoiesis: a review. Int. J. Mol. Sci. 2021; 22(16): 8855. https://doi.org/10.3390/ijms22168855

22. Ciancia S., van Rijn R.R., Högler W., Appelman-Dijkstra N.M., Boot A.M., Sas T.C.J., et al. Osteoporosis in children and adolescents: when to suspect and how to diagnose it. Eur. J. Pediatr. 2022; 181(7): 2549–61. https://doi.org/10.1007/s00431-022-04455-2

23. Sakka S.D. Osteoporosis in children and young adults. Best Pract. Res. Clin. Rheumatol. 2022; 36(3): 101776. https://doi.org/10.1016/j.berh.2022.101776

24. Sakka S.D., Cheung M.S. Management of primary and secondary osteoporosis in children. Ther. Adv. Musculoskelet. Dis. 2020; 12: 1759720X20969262. https://doi.org/10.1177/1759720X20969262

25. Djuraeva B., Hamidova Kh., Yunusova D. Differences in bone composition between children and adolescents. Evraziyskiy zhurnal meditsinskikh i estestvennykh nauk. 2023; 3(12): 113–9. (in Russian)

26. Komori T. What is the function of osteocalcin? J. Oral Biosci. 2020; 62(3): 223–7. https://doi.org/10.1016/j.job.2020.05.004

27. Klimova Zh.A., Zaft A.A., Zaft V.B. Modern laboratory diagnostics of osteoporosis. Mezhdunarodnyy endokrinologicheskiy zhurnal. 2014; (7): 75–84. https://elibrary.ru/tonirn (in Russian)

28. Bhattoa H.P., Cavalier E., Eastell R., Heijboer A.C., Jørgensen N.R., Makris K., et al. Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin. Chim. Acta. 2021; 515: 16–20. https://doi.org/10.1016/j.cca.2020.12.023

29. Brown J.P., Don-Wauchope A., Douville P., Albert C., Vasikaran S.D. Current use of bone turnover markers in the management of osteoporosis. Clin. Biochem. 2022; 109-110: 1–10. https://doi.org/10.1016/j.clinbiochem.2022.09.002

30. Williams C., Sapra A. Osteoporosis Markers. StatPearls Publishing; 2024.


Review

For citations:


Parakhina D.V., Movsisyan G.B., Potapov A.S., Semikina E.L., Fisenko A.P. Changes in bone mineral density in children with autoimmune hepatitis on the background of immunosuppressive therapy. Russian Pediatric Journal. 2025;28(1):41-46. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-1-41-46. EDN: qwddhm

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)