Fermented foods: unique properties and benefits for the microbiota
https://doi.org/10.46563/1560-9561-2025-28-2-119-126
EDN: gnwlej
Abstract
Introduction. Fermented foods (FF) are an integral part of the nutrition in many peoples of the world. There are more than 5,000 different types of FF that help improve metabolism, strengthen immunity, and reduce the risk of developing such chronic diseases as diabetes and obesity. The aim of the review is to determine the properties and effects of FF on the intestinal microbiota. To analyze the literature, a search was conducted in PubMed, MedLine, and Google Scholar databases over the past 10 years. FF has unique beneficial properties, has a significant effect on the composition of the intestinal microbiota, and has such pleiotropic effects as immunomodulatory, antioxidant, and anti-inflammatory. FF possess of prebiotic and probiotic properties, with potential benefits for patients. Different types of FF have different effects on the gut microbiota. Regular consumption of FF helps to reduce the risk of various forms of allergic pathology, autoimmune diseases, and metabolic disorders, which makes them promising for diet therapy and nutrition. The simplest and most effective way to maintain the optimal composition of the intestinal microbiota is to include FF in the daily diet, which has a positive effect on health. The diverse composition of FF, rich in probiotics, prebiotics, antioxidants, and bioactive compounds, helps to improve the functional state of the digestive system, strengthen immunity, normalize metabolism and reduce the risk of chronic diseases. FF is necessary to develop personalized approaches to nutrition based on the individual composition of the intestinal microbiota.
Contribution:
Smirnova G.I., Lebedev A.I. — concept and design of the study; collection and processing of the material; writing the text;
Korsunsky A.A. — editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: January 24, 2025
Accepted: March 18, 2025
Published: April 29, 2025
About the Authors
Galina I. SmirnovaRussian Federation
DSc, prof. of the Department of Pediatrics and Pediatric Infectious Diseases at the N.F. Filatov Clinical Institute of Child Health of the Sechenov First Moscow State Medical University (Sechenov University)
e-mail: gismirnova@yandex.ru
Alexey I. Lebedev
Russian Federation
Anatoliy A. Korsunskiy
Russian Federation
References
1. Voidarou C., Antoniadou M., Rozos G., Tzora A., Skoufos I., Varzakas T., et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods. 2020; 10(1): 69. https://doi.org/10.3390/foods10010069
2. Leeuwendaal N.K., Stanton C., O’Toole P.W., Beresford T.P. Fermented foods, health and the gut microbiome. Nutrients. 2022; 14(7): 1527. https://doi.org/10.3390/nu14071527
3. Valentino V., Magliulo R., Farsi D., Cotter P.D., O’Sullivan O., Ercolini D., et al. Fermented foods, their microbiome and its potential in boosting human health. Microb. Biotechnol. 2024; 17(2): e14428. https://doi.org/10.1111/1751-7915.14428
4. Vitorino L.C., Bessa L.A. Technological microbiology: development and applications. Front. Microbiol. 2017; 8: 827. https://doi.org/10.3389/fmicb.2017.00827
5. Guzmán-Escalera D., Valdés-Miramontes E.H., Iñiguez-Muñoz L.E., Reyes-Castillo Z., Espinoza-Gallardo A.C. Metabolites generated from foods through lactic fermentation and their benefits on the intestinal microbiota and health. J. Med. Food. 2025; 28(1): 1–11. https://doi.org/10.1089/jmf.2023.0218
6. Chilton S.N., Burton J.P., Gregor Reid G. Inclusion of fermented foods in food guides around the world. Nutrients. 2015; 7(1): 390–404. https://doi.org/10.3390/nu7010390
7. Padhi S., Sarkar P., Sahoo D., Rai A.K. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. J. Sci. Food Agric. 2024. https://doi.org/10.1002/jsfa.13313
8. Caffrey E.B., Sonnenburg J.L., Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab. 2024; 36(4): 684–701. https://doi.org/10.1016/j.cmet.2024.03.007
9. Zaib S., Hayat A., Khan I. Probiotics and their beneficial health effects. Mini Rev. Med. Chem. 2024; 24(1): 110–25. https://doi.org/10.2174/1389557523666230608163823
10. Menezes L.A.A., Pinheiro Costa Pimentel M., Alves T.O., Pimenta do Nascimento T., Evaristo J.A.M., Nogueira F.C.S., et al. Label-free quantitative proteomics to exploit the impact of sourdough fermentation on reducing wheat allergenic fractions. J. Food Chem. 2024; 430: 137037. https://doi.org/10.1016/j.foodchem.2023.137037
11. Taylor B.C., Lejzerowicz F., Poirel M., Shaffer J.P., Jiang L., Aksenov A., et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems. 2020; 5(2): e00901–19. https://doi.org/10.1128/mSystems.00901-19
12. Tamang J.P., Watanabe K., Holzapfel W.H. Review: Diversity of microorganisms in global fermented Foods and Beverages. Front. Microbiol. 2016; 7: 377. https://doi.org/10.3389/fmicb.2016.00377
13. Bessolitsyna E.A. Biochemistry of metabolism [Biokhimiya metabolizma]. St. Petersburg; 2016. (in Russian)
14. Kuranova N.G., Kupatadze G.A. Microbiology. Part 2. Metabolism of prokaryotes [Mikrobiologiya. Chast’ 2. Metabolizm prokariot]. Moscow; 2017. (in Russian)
15. Walker G., Stewart G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages. 2016; 2(4): 30. http://doi.org/10.3390/beverages2040030
16. Escalante A., Giles-Gómez M., Hernández G., Córdova-Aguilar M.S., López-Munguía A., Gosset G., et al. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int. J. Food Microbiol. 2008; 124(2): 126–34. https://doi.org/10.1016/j.ijfoodmicro.2008.03.003
17. Chen W., Wang J., Du L., Chen J., Zheng Q., Li P., et al. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit. Rev. Food Sci. Nutr. 2024; 64(5): 1371–84. https://doi.org/10.1080/10408398.2022.2115975
18. Jiang J., Sumby K.M., Sundstrom J.F., Grbin P.R., Jiranek V. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment. Food Microbiol. 2018; 73: 150–9. https://doi.org/10.1016/j.fm.2018.01.005
19. Yamada Y., Yukphan P. Genera and species in acetic acid bacteria. Int. J. Food Microbiol. 2008; 125(1): 15–24. https://doi.org/10.1016/j.ijfoodmicro.2007.11.077
20. Marič L., Cleenwerck I., Accetto T., Vandamme P., Trček J. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. isolated from apple cider vinegar. Microorganisms. 2020; 8(8): 1178. https://doi.org/10.3390/microorganisms8081178
21. Laëtitia G., Pascal D., Yann D. The citrate metabolism in homo- and heterofermentative LAB: A selective means of becoming dominant over other microorganisms in complex ecosystems. Food Nutr. Sci. 2014; 5(10): 953–69. http://doi.org/10.4236/fns.2014.510106
22. Zhang M., Li R.W., Yang H., Tan Z., Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit. Rev. Food Sci. Nutr. 2024; 64(13): 4410–31. https://doi.org/10.1080/10408398.2022.2142194
23. Guo X., Li X., Feng J., Yue Z., Fu H., Wang J. Engineering of Clostridium tyrobutyricum for butyric acid and butyl butyrate production from cassava starch. Bioresour. Technol. 2024; 391(Pt. A): 129914. https://doi.org/10.1016/j.biortech.2023.129914
24. Şanlier N., Gökcen B.B., Sezgin A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019; 59(3): 506–27. https://doi.org/10.1080/10408398.2017.1383355
25. Pop O.L., Ciont Nagy C., Gabianelli R., Coldea T.E., Pop C.R., Mudura E., et al. Deciphering contaminants and toxins in fermented food for enhanced human health safeguarding. Compr. Rev. Food Sci. Food Saf. 2024; 23(5): e13428. https://doi.org/10.1111/1541-4337.13428
26. Kindstedt P.S. Cheese and Culture: A History of Cheese and its Place in Western Civilization. Hartford: Chelsea Green Publishing Company; 2012.
27. Bittante G., Amalfitano N., Bergamaschi M., Patel N., Haddi M.L., Benabid H., et al. Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys. J. Dairy Sci. 2022; 105(3): 2132–52. https://doi.org/10.3168/jds.2021-20961
28. Shiby V.K., Mishra H.N. Fermented milks and milk products as functional foods-a review. Crit. Rev. Food Sci. Nutr. 2013; 53(5): 482–96. https://doi.org/10.1080/10408398.2010.547398
29. Ritschard J.S., Schuppler M. The microbial diversity on the surface of smear-ripened cheeses and its impact on cheese quality and safety. Foods. 2024; 13(2): 214. https://doi.org/10.3390/foods13020214
30. Abd El-Salam M.H., El-Shibiny S., Assem F.M., El-Sayyad G.S., Hasanien Y.A., Elfadil D., et al. Impact of fermented milk on gut microbiota and human health: a comprehensive review. Curr. Microbiol. 2025; 82(3): 107. https://doi.org/10.1007/s00284-025-04061-z
31. Kunyeit L., Rao R.P., Anu-Appaiah K.A. Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease. Crit. Rev. Food Sci. Nutr. 2024; 64(19): 6660–71. https://doi.org/10.1080/10408398.2023.2172546
32. Boscaini S., Leigh S.J., Lavelle A., García-Cabrerizo R., Lipuma T., Clarke G., et al. Microbiota and body weight control: weight watchers within? Mol. Metab. 2022; 57: 101427. https://doi.org/10.1016/j.molmet.2021.101427
33. Garcia-Gutierrez E., O’Mahony A.K., Dos Santos R.S., Marroquí L., Cotter P.D. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes. 2024; 16(1): 2401654. https://doi.org/10.1080/19490976.2024.2401654
34. Mincic A.M., Antal M., Filip L., Miere D. Modulation of gut microbiome in the treatment of neurodegenerative diseases: A systematic review. Clin. Nutr. 2024; 43(7): 1832–49. https://doi.org/10.1016/j.clnu.2024.05.036
35. El-Sayed A., Kapila D., Taha R.S.I., El-Sayed S., Mahen M.R.A., Taha R., et al. The role of the gut microbiome in inflammatory bowel disease: the middle east perspective. J. Pers. Med. 2024; 14(6): 652. https://doi.org/10.3390/jpm14060652
36. He W., Bertram H.C., Yin J.Y., Nie S.P. Lactobacilli and their fermented foods as a promising strategy for enhancing bone mineral density: a review. J. Agric. Food Chem. 2024; 72(32): 17730–45. https://doi.org/10.1021/acs.jafc.4c03218
37. Singh A., Negi P.S. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J. Food Sci. 2025; 90(1): e17634. https://doi.org/10.1111/1750-3841.17634
38. Mathur H., Beresford T.P., Cotter P.D. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients. 2020; 12(6): 1679. https://doi.org/10.3390/nu12061679
39. Xia B., Lin T., Li Z., Wang J., Sun Y., Wang D., et al. Lactiplantibacillus plantarum regulates intestinal physiology and enteric neurons in IBS through microbial tryptophan metabolites. J. Agric. Food Chem. 2024; 72(32): 17989–8002. https://doi.org/10.1021/acs.jafc.4c03087
40. Takeda S., Matsufuji H., Nakade K., Takenoyama S.I., Ahhmed A., Sakata R., et al. Investigation of lactic acid bacterial strains for meat fermentation and the product’s antioxidant and angiotensin-I-converting-enzyme inhibitory activities. Anim. Sci. J. 2017; 88(3): 507–16. https://doi.org/10.1111/asj.12673
41. Sørensen H.M., Rochfort K.D., Maye S., MacLeod G., Brabazon D., Loscher C., et al. Exopolysaccharides of lactic acid bacteria: production, purification and health benefits towards functional food. Nutrients. 2022; 14(14): 2938. https://doi.org/10.3390/nu14142938
42. Ryan P.M., Ross R.P., Fitzgerald G.F., Caplice N.M., Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 2015; 6(3): 679–93. https://doi.org/10.1039/c4fo00529e
43. Tok E., Aslim B. Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol. Immunol. 2010; 54(5): 257–64. https://doi.org/10.1111/j.1348-0421.2010.00219.x
44. Yao Z., Zhu Y., Wu Q., Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit. Rev. Food Sci. Nutr. 2024; 64(15): 4995–5015. https://doi.org/10.1080/10408398.2022.2147899
45. Lynch K.M., Zannini E., Coffey A., Arendt E.K. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu. Rev. Food Sci. Technol. 2018; 9: 155–76. https://doi.org/10.1146/annurev-food-030117-012537
46. Jensen N., Maldonado-Gomez M., Krishnakumar N., Weng C.Y., Castillo J., Razi D., et al. Dietary fiber monosaccharide content alters gut microbiome composition and fermentation. Appl. Environ. Microbiol. 2024; 90(8): e0096424. https://doi.org/10.1128/aem.00964-24
47. Koudoufio M., Desjardins Y., Feldman F., Spahis S., Delvin E., Levy E. Insight into polyphenol and gut microbiota crosstalk: are their metabolites the key to understand protective еffects against metabolic disorders? Antioxidants (Basel). 2020; 9(10): 982. https://doi.org/10.3390/antiox9100982
48. Ibarlucea-Jerez M., Monnoye M., Chambon C., Gérard P., Licandro H., Neyraud E. Fermented food consumption modulates the oral microbiota. NPJ Sci. Food. 2024; 8(1): 55. https://doi.org/10.1038/s41538-024-00298-3
49. Tomás-Barberán F.A., Selma M.V., Espín J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care. 2016; 19(6): 471–6. https://doi.org/10.1097/MCO.0000000000000314
50. Bisht V., Das B., Navani N.K. Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. J. Sci. Food Agric. 2024. https://doi.org/10.1002/jsfa.13783
51. Cuamatzin-García L., Rodríguez-Rugarcía P., El-Kassis E.G., Galicia G., Meza-Jiménez M.L., Baños-Lara M.D.R., et al. Traditional fermented foods and beverages from around the world and their health benefits. Microorganisms. 2022; 10(6): 1151. https://doi.org/10.3390/microorganisms10061151
52. Kasperek M.C., Velasquez Galeas A., Caetano-Silva M.E., Xie Z., Ulanov A., La Frano M., et al. Microbial aromatic amino acid metabolism is modifiable in fermented food matrices to promote bioactivity. Food Chem. 2024; 454: 139798. https://doi.org/10.1016/j.foodchem.2024.139798
53. Falà A.K., Álvarez-Ordóñez A., Filloux A., Gahan C.G.M., Cotter P.D. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front. Microbiol. 2022; 13: 1002185. https://doi.org/10.3389/fmicb.2022.1002185
54. Whon T.W., Ahn S.W., Yang S., Kim J.Y., Kim Y.B., Kim Y., et al. ODFM, an omics data resource from microorganisms associated with fermented foods. Sci. Data. 2021; 8(1): 113. https://doi.org/10.1038/s41597-021-00895-x
55. Xin Y., Qiao M. Towards microbial consortia in fermented foods for metabolic engineering and synthetic biology. Food Res. Int. 2025; 201: 115677. https://doi.org/10.1016/j.foodres.2025.115677
56. De Filippis F., Valentino V., Yap M., Cabrera-Rubio R., Barcenilla C., Carlino N., et al. Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. NPJ Biofilms Microbiomes. 2024; 10(1): 67. https://doi.org/10.1038/s41522-024-00541-5
57. Jin R., Song J., Liu C., Lin R., Liang D., Aweya J.J., et al. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr. Rev. Food Sci. Food Saf. 2024; 23(4): e13388. https://doi.org/10.1111/1541-4337.13388
58. Zinno P., Calabrese F.M., Schifano E., Sorino P., Di Cagno R., Gobbetti M., et al. FDF-DB: a database of traditional fermented dairy foods and their associated microbiota. Nutrients. 2022; 14(21): 4581. https://doi.org/10.3390/nu14214581
59. Smirnova G.I., Labinov V.S., Korsunsky A.A. Irritable bowel syndrome in children: pathogenetic significance of disorders of intestinal microbiota. Rossiyskiy pediatricheskiy zhurnal. 2024; 27(1): 49–54. https://doi.org/10.46563/1560-9561-2024-27-1-49-54 https://elibrary.ru/xqpypx (in Russian)
60. Zinno P., Perozzi G., Devirgiliis C. Foodborne microbial communities as potential reservoirs of antimicrobial resistance genes for pathogens: a critical review of the recent literature. Microorganisms. 2023; 11(7): 1696. https://doi.org/10.3390/microorganisms11071696
61. Kango N., Nath S. Prebiotics, probiotics and postbiotics: the changing paradigm of functional foods. J. Diet. Suppl. 2024; 21(5): 709–35. https://doi.org/10.1080/19390211.2024.2363199
Review
For citations:
Smirnova G.I., Lebedev A.I., Korsunskiy A.A. Fermented foods: unique properties and benefits for the microbiota. Russian Pediatric Journal. 2025;28(2):119-126. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-2-119-126. EDN: gnwlej