Искусственный интеллект и нейронные сети в детской урологии
https://doi.org/10.46563/1560-9561-2025-28-4-282-287
Аннотация
Проведён систематический поиск научных публикаций в базах данных PubMed, Scopus, Google Scholar, eLIBRARY.RU за 2018–2024 гг. В выборку включены клинические исследования (n ≥ 50), метаанализы, для систематических обзоров применяли PRISMA-методологию. Интеграция технологий ИИ в клиническую практику обладает большим потенциалом для решения клинических задач в детской урологии. Ограничениями для успешного внедрения остаются недостаточная надёжность существующих моделей и отсутствие адаптированных для клинического применения алгоритмов.
Ключевые слова
Об авторах
Сергей Николаевич ЗоркинРоссия
Римир Радикович Баязитов
Россия
Александра Сергеевна Гурская
Россия
Екатерина Викторовна Екимовская
Россия
Список литературы
1. Chen J., Remulla D., Nguyen J.H., Dua A., Liu Y., Dasgupta P., et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 2019; 124(4): 567–77. https://doi.org/10.1111/bju.14852
2. Scott Wang H.H., Vasdev R., Nelson C.P. Artificial intelligence in pediatric urology. Urol. Clin. North Am. 2024; 51(1): 91–103. https://doi.org/10.1016/j.ucl.2023.08.002
3. Cooper C.S. A potpourri of pediatric urology: the winds of change. J. Pediatr. Urol. 2025; 21(3): 793–5. https://doi.org/10.1016/j.jpurol.2025.04.020
4. Khondker A., Kwong J.C.C., Malik S., Erdman L., Keefe D.T., Fernandez N., et al. The state of artificial intelligence in pediatric urology. Front. Urol. 2022; 2: 1024662. https://doi.org/10.3389/fruro.2022.1024662
5. Lorenzo A.J., Rickard M., Braga L.H., Guo Y., Oliveria J.P. Predictive analytics and modeling employing machine learning technology: the next step in data sharing, analysis, and individualized counseling explored with a large, prospective prenatal hydronephrosis database. Urology. 2019; 123: 204–9. https://doi.org/10.1016/j.urology.2018.05.041
6. Дубров В.И., Сизонов В.В., Каганцов И.М., Негматова К.Н., Бондаренко С.Г. Прогнозирование результатов однократной эндоскопической коррекции пузырно-мочеточникового рефлюкса с использованием декстраномерагиалуроновой кислоты. Выбор оптимальной прогностической модели. Вестник урологии. 2021; 9(2): 45–55. https://doi.org/10.21886/2308-6424-2021-9-2-45-55 https://elibrary.ru/lwygjj
7. Eroglu Y., Yildirim K., Çinar A., Yildirim M. Diagnosis and grading of vesicoureteral reflux on voiding cystourethrography images in children using a deep hybrid model. Comput. Methods Programs Biomed. 2021; 210: 106369. https://doi.org/10.1016/j.cmpb.2021.106369
8. Smail L.C., Dhindsa K., Braga L.H., Becker S., Sonnadara R.R. Using deep learning algorithms to grade hydronephrosis severity: toward a clinical adjunct. Front. Pediatr. 2020; 8: 1. https://doi.org/10.3389/fped.2020.00001
9. Blum E.S., Porras A.R., Biggs E., Tabrizi P.R., Sussman R.D., Sprague B.M., et al. Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: a dynamic solution to a dynamic problem. J. Urol. 2018; 199(3): 847–52. https://doi.org/10.1016/j.juro.2017.09.147
10. Abbas T.O., Abdel Moniem M., Khalil I.A., Abrar Hossain M.S., Chowdhury M.E.H. Deep learning based automated quantification of urethral plate characteristics using the plate objective scoring tool (POST). J. Pediatr. Urol. 2023; 19(4): 373.e1–9. https://doi.org/10.1016/j.jpurol.2023.03.033
11. Abdovic S., Cuk M., Cekada N., Milosevic M., Geljic A., Fusic S., et al. Predicting posterior urethral obstruction in boys with lower urinary tract symptoms using deep artificial neural network. World J. Urol. 2019; 37(9): 1973–9. https://doi.org/10.1007/s00345-018-2588-9
12. Kwong J.C., Khondker A., Kim J.K., Chua M., Keefe D.T., Dos Santos J., et al. Posterior Urethral Valves Outcomes Prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves. Pediatr. Nephrol. 2022; 37(5): 1067–74. https://doi.org/10.1007/s00467-021-05321-3
13. Bertsimas D., Li M., Estrada C., Nelson C., Scott Wang H.H. Selecting children with vesicoureteral reflux who are most likely to benefit from antibiotic prophylaxis: application of machine learning to RIVUR. J. Urol. 2021; 205(4): 1170–9. https://doi.org/10.1097/JU.0000000000001445
14. Щамхалова К.К., Меринов Д.С., Артемов А.В., Гурбанов Ш.Ш. Искусственный интеллект и нейронные сети в урологии. Экспериментальная и клиническая урология. 2023; 16(2): 32–7. https://doi.org/10.29188/2222-8543-2023-16-2-32-37 https://elibrary.ru/znnfhu
15. Тимофеева Е.Ю., Азильгареева К.Р., Морозов А.О., Тараткин М.С., Еникеев Д.В. Использование искусственного интеллекта в диагностике, лечении и наблюдении за пациентами с раком почки. Вестник урологии. 2023; 11(3): 142–8. https://doi.org/10.21886/2308-6424-2023-11-3-142-148 https://elibrary.ru/kopikz
16. Wen Y., Di H. Potential and risks of artificial intelligence models: Common in medicine practice and special in pediatric urology. J. Pediatr. Urol. 2023; 19(5): 666–7. https://doi.org/10.1016/j.jpurol.2023.06.005
17. Khondker A., Kwong J.C.C., Rickard M., Skreta M., Keefe D.T., Lorenzo A.J., et al. A machine learning-based approach for quantitative grading of vesicoureteral reflux from voiding cystourethrograms: Methods and proof of concept. J. Pediatr. Urol. 2022; 18(1): 78.e1–78.e7. https://doi.org/10.1016/j.jpurol.2021.10.009
18. Topol E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019; 25(1): 44–56. https://doi.org/10.1038/s41591-018-0300-7
19. Rajpurkar P., Chen E., Banerjee O., Topol E. AI in health and medicine. Nat. Med. 2022; 28(1): 31–8. https://doi.org/10.1038/s41591-021-01614-0
20. Reis M., Reis F., Kunde W. Influence of believed AI involvement on the perception of digital medical advice. Nat. Med. 2024; 30(11): 3098–100. https://doi.org/10.1038/s41591-024-03180-7
21. Keskinoğlu A., Özgür S. The use of artificial neural networks for differential diagnosis between vesicoureteral reflux and urinary tract infection in children. J. Pediatr. Res. 2020; 7(3): 230–5. https://doi.org/10.4274/jpr.galenos.2019.24650
22. Logvinenko T., Chow J.S., Nelson C.P. Predictive value of specific ultrasound findings when used as a screening test for abnormalities on VCUG. J. Pediatr. Urol. 2015; 11(4): 176.e1–7. https://doi.org/10.1016/j.jpurol.2015.03.006
23. Weaver J.K., Logan J., Broms R., Antony M., Rickard M., Erdman L., et al. Deep learning of renal scans in children with antenatal hydronephrosis. J. Pediatr. Urol. 2023; 19(5): 514.e1–7. https://doi.org/10.1016/j.jpurol.2022.12.017
24. Fernandez N., Lorenzo A.J., Rickard M., Chua M., Pippi-Salle J.L., Perez J., et al. Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist. Urology. 2021; 147: 264–9. https://doi.org/10.1016/j.urology.2020.09.019
25. Bertsimas D., Estrada C., Nelson C., Li M., Scott Wang H.H., Dunn J. Advanced analytics group of pediatric urology and ORC personalized medicine group. Targeted workup after initial febrile urinary tract infection: using a novel machine learning model to identify children most likely to benefit from voiding cystourethrogram. J. Urol. 2019; 202(1): 144–52. https://doi.org/10.1097/JU.0000000000000186
26. Weaver J.K., Martin-Olenski M., Logan J., Broms R., Antony M., Van Batavia J., et al. Deep learning of videourodynamics to classify bladder dysfunction severity in patients with spina bifida. J. Urol. 2023; 209(5): 994–1003. https://doi.org/10.1097/JU.0000000000003267
27. Tsai M.C., Lu H.H., Chang Y.C., Huang Y.C., Fu L.S. Automatic screening of pediatric renal ultrasound abnormalities: deep learning and transfer learning approach. JMIR Med. Inform. 2022; 10(11): e40878. https://doi.org/10.2196/40878
28. McKinney S.M., Sieniek M., Godbole V., Godwin J., Antropova N., Ashrafian H., et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577(7788): 89–94. https://doi.org/10.1038/s41586-019-1799-6
Рецензия
Для цитирования:
Зоркин С.Н., Баязитов Р.Р., Гурская А.С., Екимовская Е.В. Искусственный интеллект и нейронные сети в детской урологии. Российский педиатрический журнал. 2025;28(4):282-287. https://doi.org/10.46563/1560-9561-2025-28-4-282-287
For citation:
Zorkin S.N., Bayazitov R.R., Gurskaya A.S., Ekimovskaya E.V. Artificial intelligence and neural networks in pediatric urology. Russian Pediatric Journal. 2025;28(4):282-287. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-4-282-287