Preview

Russian Pediatric Journal

Advanced search

Artificial intelligence and neural networks in pediatric urology

https://doi.org/10.46563/1560-9561-2025-28-4-282-287

Abstract

Introduction. Artificial intelligence (AI) and neural networks are powerful tools that can analyze large amounts of data, identify patterns, and make forecastings. Ultrasound, radiography, scintigraphy, and the quantitative indices (degrees, sizes, indices) used in the diagnosis of urological diseases in children are an ideal object for training computer vision algorithms for the purpose of automatic analysis and calculation of the indices of interest to the doctor. Various AI models have been proposed for predicting treatment outcomes, risks of complications, and developing personalized therapy. AI can reduce the workload on medical personnel by automating routine tasks. A decision support system, remote patient monitoring capabilities, virtual simulators, chatbots, and assistants are technologies that are in high demand among health workers. However, there is a number of limitations to the use of AI. It is important to remember that algorithms are tested on ideally prepared data sets, while in real practice, doctors are faced with incomplete information, technical artifacts, and atypical cases. Therefore, for the successful integration of AI models into pediatric urology, it is necessary to ensure high quality of data for machine learning, security of collection and storage of personal patient data, and compliance with ethical standards. Aim. To analyze the literature data on the use of AI in pediatric urology in the world and Russia in the diagnosis of vesicoureteral reflux, hydronephrosis, hypospadias, posterior urethral valve.
A systematic search of scientific publications was conducted in the PubMed, Scopus, Google Scholar, eLibrary.ru databases for the period 2018–2024. The sample included clinical studies (n ≥ 50), meta-analyses, and PRISMA methodology was used for systematic reviews. The integration of AI technologies into clinical practice has great potential for solving clinical problems in pediatric urology. The limitations for successful implementation remain the insufficient reliability of existing models and the lack of algorithms adapted for the clinical use.

About the Authors

Sergey N. Zorkin
National Medical Research Center for Children’s Health
Russian Federation


Rimir R. Bayazitov
National Medical Research Center for Children’s Health
Russian Federation


Aleksandra S. Gurskaya
National Medical Research Center for Children’s Health
Russian Federation


Ekaterina V. Ekimovskaya
National Medical Research Center for Children’s Health
Russian Federation


References

1. Chen J., Remulla D., Nguyen J.H., Dua A., Liu Y., Dasgupta P., et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 2019; 124(4): 567–77. https://doi.org/10.1111/bju.14852

2. Scott Wang H.H., Vasdev R., Nelson C.P. Artificial intelligence in pediatric urology. Urol. Clin. North Am. 2024; 51(1): 91–103. https://doi.org/10.1016/j.ucl.2023.08.002

3. Cooper C.S. A potpourri of pediatric urology: the winds of change. J. Pediatr. Urol. 2025; 21(3): 793–5. https://doi.org/10.1016/j.jpurol.2025.04.020

4. Khondker A., Kwong J.C.C., Malik S., Erdman L., Keefe D.T., Fernandez N., et al. The state of artificial intelligence in pediatric urology. Front. Urol. 2022; 2: 1024662. https://doi.org/10.3389/fruro.2022.1024662

5. Lorenzo A.J., Rickard M., Braga L.H., Guo Y., Oliveria J.P. Predictive analytics and modeling employing machine learning technology: the next step in data sharing, analysis, and individualized counseling explored with a large, prospective prenatal hydronephrosis database. Urology. 2019; 123: 204–9. https://doi.org/10.1016/j.urology.2018.05.041

6. Дубров В.И., Сизонов В.В., Каганцов И.М., Негматова К.Н., Бондаренко С.Г. Прогнозирование результатов однократной эндоскопической коррекции пузырно-мочеточникового рефлюкса с использованием декстраномерагиалуроновой кислоты. Выбор оптимальной прогностической модели. Вестник урологии. 2021; 9(2): 45–55. https://doi.org/10.21886/2308-6424-2021-9-2-45-55 https://elibrary.ru/lwygjj

7. Eroglu Y., Yildirim K., Çinar A., Yildirim M. Diagnosis and grading of vesicoureteral reflux on voiding cystourethrography images in children using a deep hybrid model. Comput. Methods Programs Biomed. 2021; 210: 106369. https://doi.org/10.1016/j.cmpb.2021.106369

8. Smail L.C., Dhindsa K., Braga L.H., Becker S., Sonnadara R.R. Using deep learning algorithms to grade hydronephrosis severity: toward a clinical adjunct. Front. Pediatr. 2020; 8: 1. https://doi.org/10.3389/fped.2020.00001

9. Blum E.S., Porras A.R., Biggs E., Tabrizi P.R., Sussman R.D., Sprague B.M., et al. Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: a dynamic solution to a dynamic problem. J. Urol. 2018; 199(3): 847–52. https://doi.org/10.1016/j.juro.2017.09.147

10. Abbas T.O., Abdel Moniem M., Khalil I.A., Abrar Hossain M.S., Chowdhury M.E.H. Deep learning based automated quantification of urethral plate characteristics using the plate objective scoring tool (POST). J. Pediatr. Urol. 2023; 19(4): 373.e1–9. https://doi.org/10.1016/j.jpurol.2023.03.033

11. Abdovic S., Cuk M., Cekada N., Milosevic M., Geljic A., Fusic S., et al. Predicting posterior urethral obstruction in boys with lower urinary tract symptoms using deep artificial neural network. World J. Urol. 2019; 37(9): 1973–9. https://doi.org/10.1007/s00345-018-2588-9

12. Kwong J.C., Khondker A., Kim J.K., Chua M., Keefe D.T., Dos Santos J., et al. Posterior Urethral Valves Outcomes Prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves. Pediatr. Nephrol. 2022; 37(5): 1067–74. https://doi.org/10.1007/s00467-021-05321-3

13. Bertsimas D., Li M., Estrada C., Nelson C., Scott Wang H.H. Selecting children with vesicoureteral reflux who are most likely to benefit from antibiotic prophylaxis: application of machine learning to RIVUR. J. Urol. 2021; 205(4): 1170–9. https://doi.org/10.1097/JU.0000000000001445

14. Щамхалова К.К., Меринов Д.С., Артемов А.В., Гурбанов Ш.Ш. Искусственный интеллект и нейронные сети в урологии. Экспериментальная и клиническая урология. 2023; 16(2): 32–7. https://doi.org/10.29188/2222-8543-2023-16-2-32-37 https://elibrary.ru/znnfhu

15. Тимофеева Е.Ю., Азильгареева К.Р., Морозов А.О., Тараткин М.С., Еникеев Д.В. Использование искусственного интеллекта в диагностике, лечении и наблюдении за пациентами с раком почки. Вестник урологии. 2023; 11(3): 142–8. https://doi.org/10.21886/2308-6424-2023-11-3-142-148 https://elibrary.ru/kopikz

16. Wen Y., Di H. Potential and risks of artificial intelligence models: Common in medicine practice and special in pediatric urology. J. Pediatr. Urol. 2023; 19(5): 666–7. https://doi.org/10.1016/j.jpurol.2023.06.005

17. Khondker A., Kwong J.C.C., Rickard M., Skreta M., Keefe D.T., Lorenzo A.J., et al. A machine learning-based approach for quantitative grading of vesicoureteral reflux from voiding cystourethrograms: Methods and proof of concept. J. Pediatr. Urol. 2022; 18(1): 78.e1–78.e7. https://doi.org/10.1016/j.jpurol.2021.10.009

18. Topol E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019; 25(1): 44–56. https://doi.org/10.1038/s41591-018-0300-7

19. Rajpurkar P., Chen E., Banerjee O., Topol E. AI in health and medicine. Nat. Med. 2022; 28(1): 31–8. https://doi.org/10.1038/s41591-021-01614-0

20. Reis M., Reis F., Kunde W. Influence of believed AI involvement on the perception of digital medical advice. Nat. Med. 2024; 30(11): 3098–100. https://doi.org/10.1038/s41591-024-03180-7

21. Keskinoğlu A., Özgür S. The use of artificial neural networks for differential diagnosis between vesicoureteral reflux and urinary tract infection in children. J. Pediatr. Res. 2020; 7(3): 230–5. https://doi.org/10.4274/jpr.galenos.2019.24650

22. Logvinenko T., Chow J.S., Nelson C.P. Predictive value of specific ultrasound findings when used as a screening test for abnormalities on VCUG. J. Pediatr. Urol. 2015; 11(4): 176.e1–7. https://doi.org/10.1016/j.jpurol.2015.03.006

23. Weaver J.K., Logan J., Broms R., Antony M., Rickard M., Erdman L., et al. Deep learning of renal scans in children with antenatal hydronephrosis. J. Pediatr. Urol. 2023; 19(5): 514.e1–7. https://doi.org/10.1016/j.jpurol.2022.12.017

24. Fernandez N., Lorenzo A.J., Rickard M., Chua M., Pippi-Salle J.L., Perez J., et al. Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist. Urology. 2021; 147: 264–9. https://doi.org/10.1016/j.urology.2020.09.019

25. Bertsimas D., Estrada C., Nelson C., Li M., Scott Wang H.H., Dunn J. Advanced analytics group of pediatric urology and ORC personalized medicine group. Targeted workup after initial febrile urinary tract infection: using a novel machine learning model to identify children most likely to benefit from voiding cystourethrogram. J. Urol. 2019; 202(1): 144–52. https://doi.org/10.1097/JU.0000000000000186

26. Weaver J.K., Martin-Olenski M., Logan J., Broms R., Antony M., Van Batavia J., et al. Deep learning of videourodynamics to classify bladder dysfunction severity in patients with spina bifida. J. Urol. 2023; 209(5): 994–1003. https://doi.org/10.1097/JU.0000000000003267

27. Tsai M.C., Lu H.H., Chang Y.C., Huang Y.C., Fu L.S. Automatic screening of pediatric renal ultrasound abnormalities: deep learning and transfer learning approach. JMIR Med. Inform. 2022; 10(11): e40878. https://doi.org/10.2196/40878

28. McKinney S.M., Sieniek M., Godbole V., Godwin J., Antropova N., Ashrafian H., et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577(7788): 89–94. https://doi.org/10.1038/s41586-019-1799-6


Review

For citations:


Zorkin S.N., Bayazitov R.R., Gurskaya A.S., Ekimovskaya E.V. Artificial intelligence and neural networks in pediatric urology. Russian Pediatric Journal. 2025;28(4):282-287. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-4-282-287

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)