Features of determining the diffusion capacity of the lungs by carbon monoxide in cystic fibrosis children
https://doi.org/10.46563/1560-9561-2022-25-5-350-356
EDN: eybiha
Abstract
The article presents current literature data from English-language (search made in PubMed) and Russian-language (search made in eLibrary) sources about the method for measurement of the lung diffusing capacity for carbon monoxide in children with cystic fibrosis (CF). This review presents the general characteristics of this test in children and adults with various diseases, and also describes the conflicting results of studies using this method in CF patients of various ages and disease severity. The expediency, the informativeness, and difficulties of evaluation and interpretation of the test’s results, depending on the age and course of the disease of patients, are discussed. The author concludes that further research of interpretation of indicators determined during the test of the lung diffusing capacity for carbon monoxide, such as the transfer factor, alveolar volume, and their ratio in CF children is necessary.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The author declares no conflict of interest.
Received: August 24, 2022
Accepted: September 20, 2022
Published: October 31, 2022
About the Author
Serafima G. BystrovaRussian Federation
MD, PhD student in the Department of Pediatrics and Pediatric Rheumatology, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), assistant in the Laboratory of childhood rare genetic diseases, National Medical Research Center for Children’s Health, Ministry of Health of the Russian Federation.
e-mail: cerafima.bystrova@yandex.ru
References
1. Stanton B.F. Cystic fibrosis. Pediatr. Clin. North Am. 2016; 63(4): xv. https://doi.org/10.1016/j.pcl.2016.06.002
2. Cheney J., Vidmar S., Gailer N., Wainwright C., Douglas T.A. Health-related quality-of-life in children with cystic fibrosis aged 5-years and associations with health outcomes. J. Cyst. Fibros. 2020; 19(3): 483–91. https://doi.org/10.1016/j.jcf.2020.02.022
3. Wilk M.A., Braun A.T., Farrell P.M., Laxova A., Brown D.M., Holt J.M., et al. Applying whole-genome sequencing in relation to phenotype and outcomes in siblings with cystic fibrosis. Cold Spring Harb. Mol. Case. Stud. 2020; 6(1): 004531. https://doi.org/10.1101/mcs.a004531
4. Lahiri T., Hempstead S.E., Brady C., Cannon C.L., Clark K., Condren M.E., et al. Clinical practice guidelines from the cystic fibrosis foundation for preschoolers with cystic fibrosis. Pediatrics. 2016; 137(4): e20151784. https://doi.org/10.1542/peds.2015-1784
5. Kondrat’eva E.I., Krasovskiy S.A., Starinova M.A., Voronkova A.Yu., Amelina E.L., Kashirskaya N.Yu., et al. Register of Patients with Cystic Fibrosis in the Russian Federation – 2020 [Registr patsientov s mukovistsidozom v Rossiyskoy Federatsii – 2020]. Moscow: Medpraktika-M; 2022. (in Russian)
6. Kutsev S.I., Izhevskaya V.L., Kondrat’eva E.I. Targeted therapy for cystic fibrosis. Pul’monologiya. 2021; 31(2): 226–36. https://doi.org/10.18093/0869-0189-2021-31-2-226-236 (in Russian)
7. Earnest A., Salimi F., Wainwright C.E., Bell S.C., Ruseckaite R., Ranger T., et al. Lung function over the life course of paediatric and adult patients with cystic fibrosis from a large multi-centre registry. Sci. Rep. 2020; 10(1): 17421. https://doi.org/10.1038/s41598-020-74502-1
8. Furman E.G., Kondrat’eva E.I., Chernyak A.V., Shadrina V.V. The age-related assessment of pulmonary function in children with cystic fibrosis aged below 6 years. Pul’monologiya. 2019; 29(6): 739–44. https://doi.org/10.18093/0869-0189-2019-29-6-739-744 (in Russian)
9. Pavlinova E.B., Safonova T.I., Kirshina I.A., Mingairova A.G., Vlasenko N.Yu., Polyanskaya N.A. Possibilities of computed bronchophonography in the diagnosis of external respiratory dysfunction in patients with cystic fibrosis. Rossiyskiy vestnik perinatologii i pediatrii. 2016; 61(5): 52–6. https://doi.org/10.21508/1027-4065-2016-61-5-52-56 (in Russian)
10. Radtke T., Böni L., Bohnacker P., Maggi-Beba M., Fischer P., Kriemler S., et al. Acute effects of combined exercise and oscillatory positive expiratory pressure therapy on sputum properties and lung diffusing capacity in cystic fibrosis: a randomized, controlled, crossover trial. BMC Pulm. Med. 2018; 18(1): 99. https://doi.org/10.1186/s12890-018-0661-1
11. Merkus P.J., Govaere E.S., Hop W.H., Stam H., Tiddens H.A., de Jongste J.C. Preserved diffusion capacity in children with cystic fibrosis. Pediatr. Pulmonol. 2004; 37(1): 56–60. https://doi.org/10.1002/ppul.10357
12. Vilozni D., Dagan A., Sarouk I., Bar-Aluma B.E., Ashkenazi M., Bezalel Y., et al. Advanced lung disease in patients with cystic fibrosis is associated with low diffusion capacity. Isr. Med. Assoc. J. 2020; 22(12): 770–4.
13. Graham B.L., Brusasco V., Burgos F. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49: 1600016. https://doi.org/10.1183/13993003.00016-2016
14. Wanger J., Clausen J.L., Coates A., Pedersen O.F., Brusasco V., Burgos F., et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26(3): 511–22. https://doi.org/10.1183/09031936.05.00035005
15. Bokov P., Delclaux C. Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test. Rev. Med. Interne. 2016; 37(2): 100–10. https://doi.org/10.1016/j.revmed.2015.10.356 (in French)
16. Roughton F.J., Forster R.E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 1957; 11(2): 290–302. https://doi.org/10.1152/jappl.1957.11.2.290
17. Ogilvie C., Forster R., Blakemore W., Morton J.W. A standardized breath-holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957; 36(1 Pt. 1): 1–17. https://doi.org/10.1172/jci103402
18. Macintyre N., Crapo R.O., Viegi G., Johnson D.C., van der Grinten C.P.M., Brusasco V., et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005; 26(4): 720–35. https://doi.org/10.1183/09031936.05.00034905
19. Salvador-Ong R., Dijkers E., van Steenwijk R., Sterk P. Single-breath diffusion: comparison between helium and methane as tracer gases in COPD and healthy controls. Eur. Respir. J. 2014; 44: 1271.
20. von Westernhagen F., Smidt U. The significance of the difference between slow inspiratory and forced expiratory vital capacity. Lung. 1978; 154(4): 289–97. https://doi.org/10.1007/bf02713545
21. Zavorsky G.S., Wilson B., Harris J.K., Kim D.J., Carli F., Mayo N.E. Pulmonary diffusion and aerobic capacity: is there a relation? Does obesity matter? Acta Physiol. (Oxf.). 2010; 198(4): 499–507. https://doi.org/10.1111/j.1748-1716.2009.02059.x
22. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94(1): 28–37. https://doi.org/10.1053/rmed.1999.0740
23. Hughes J.M., Pride N.B. Examination of the carbon monoxide diffusing capacity (DL(CO)) in relation to its KCO and VA components. Am. J. Respir. Crit. Care Med. 2012; 186(2): 132–9. https://doi.org/10.1164/rccm.201112-2160CI
24. Measurement of single-breath diffusing capacity of the lungs for carbon monoxide: new standards of European Respiratory Society and American Thoracic Society (part 2). Pul’monologiya. 2019; 29(3): 269–91. https://doi.org/10.18093/0869-0189-2019-29-3-269-291 (in Russian)
25. Ring A.M., Carlens J., Bush A., Castillo-Corullón S., Fasola S., Gaboli M.P., et al. Pulmonary function testing in children’s interstitial lung disease. Eur. Respir. Rev. 2020; 29(157): 200019. https://doi.org/10.1183/16000617.0019-2020
26. Fitzgerald N.M., Fitzgerald D.A., Lands L., Selvadurai H. Diffusion capacity in children: what happens with exercise? Paediatr. Respir. Rev. 2013; 14(3): 190–4. https://doi.org/10.1016/j.prrv.2012.08.005
27. Degano B., Perrin F., Soumagne T., Agard C., Chambellan A. Pulmonary CO/NO transfer: physiological basis, technical aspects and clinical impact. Rev. Med. Interne. 2014; 35(5): 322–7. https://doi.org/10.1016/j.revmed.2013.11.001
28. Moscato U., Poscia A., Gargaruti R., Capelli G., Cavaliere F. Normal values of exhaled carbon monoxide in healthy subjects: comparison between two methods of assessment. BMC Pulm. Med. 2014; 14: 204. https://doi.org/10.1186/1471-2466-14-204
29. Chemery L., Fekete K., Guillot S., Roussey M., Desrues B., Dabadie A., et al. Diffusing capacity for carbon monoxide (T(LCO)) and oxygen saturation during exercise in patients with cystic fibrosis. Arch. Pediatr. 2004; 11(9): 1060–6. https://doi.org/10.1016/j.arcped.2004.04.019
30. Yang J., Stanton J., Wang L., Beckert L., Frampton C., Burton D., et al. Effect of salbutamol on the measurement of single-breath diffusing capacity. Respirology. 2013; 18(8): 1223–9. https://doi.org/10.1111/resp.12125
31. Pedreira C.C., Robert R.G., Dalton V., Oliver M.R., Carlin J.B., Robinson P., et al. Association of body composition and lung function in children with cystic fibrosis. Pediatr. Pulmonol. 2005; 39(3): 276–80. https://doi.org/ 10.1002/ppul.20162
32. Ding S., Zhong C. Exercise and cystic fibrosis. Adv. Exp. Med. Biol. 2020; 1228: 381–91. https://doi.org/10.1007/978-981-15-1792-1_26
33. Dressel H., Filser L., Fischer R., Marten K., Müller-Lisse U., de la Motte D., et al. Lung diffusing capacity for nitric oxide and carbon monoxide in relation to morphological changes as assessed by computed tomography in patients with cystic fibrosis. BMC Pulm. Med. 2009; 9: 30. https://doi.org/10.1186/1471-2466-9-30
34. Salcedo-Posadas A., Villa-Asensi J.R., de Mir Messa I., Sardon-Prado O., Larramona H. Measurement of CO diffusion capacity (II): Standardisation and quality criteria. Anales de Pediatría (English Ed.). 2015; 83(2): 1–7. https://doi.org/10.1016/j.anpede.2015.06.012
35. Lacerda L.S., Lopes A.J., Carvalho A.R.S., Guimarães A.R.M., Firmida M.C., Castro M.C.S., et al. The role of multidetector computed tomography and the forced oscillation technique in assessing lung damage in adults with cystic fibrosis. Respir. Care. 2018; 63(4): 430–40. https://doi.org/10.4187/respcare.05815
36. Hughes J.M., van der Lee I. The TL,NO/TL,CO ratio in pulmonary function test interpretation. Eur. Respir. J. 2013; 41(2): 453–61. https://doi.org/10.1183/09031936.00082112
37. Guillot S., Beillot J., Meunier C., Dassonville J. Interpreting carbon monoxide transfer coefficient: significance and difficulties. Rev. Mal. Respir. 2005; 22(5 Pt. 1): 759–66. https://doi.org/10.1016/s0761-8425(05)85633-5
38. Koopman M., Zanen P., Kruitwagen C.L.J.J., van der Ent C.K., Arets H.G.M. Reference values for paediatric pulmonary function testing: The Utrecht dataset. Respir. Med. 2011; 105(1): 15–23. https://doi.org/10.1016/j.rmed.2010.07.020
39. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94(1): 28–37. https://doi.org/10.1053/rmed.1999.0740
40. Shimizu K., Konno S., Makita H., Kimura H., Kimura H., Suzuki M., et al. Transfer coefficients better reflect emphysematous changes than carbon monoxide diffusing capacity in obstructive lung diseases. J. Appl. Physiol. (1985). 2018; 125(1): 183–9. https://doi.org/10.1152/japplphysiol.01062.2018
41. Rocamora-Pérez P., Benzo-Iglesias M.J., Valverde-Martínez M.L.Á., García-Luengo V., AguilarParra J.M., Trigueros R., et al. Effectiveness of positive expiratory pressure on patients over 16 years of age with cystic fibrosis: systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2022; 16: 17534666221089467. https://doi.org/10.1177/17534666221089467
42. Piacentini G.L., Tezza G., Cattazzo E., Kantar A., Ragazzo V., Boner A.L., et al. Diffusion lung capacity of carbon monoxide: A novel marker of airways remodeling in asthmatic children? Allergy Rhinol. (Providence). 2012; 3(2): 66–73. https://doi.org/10.2500/ar.2012.3.0033
43. Mondal P., Yirinec A., Midya V., Sankoorikal B.J., Smink G., Khokhar A., et al. Diagnostic value of spirometry vs impulse oscillometry: A comparative study in children with sickle cell disease. Pediatr. Pulmonol. 2019; 54(9): 1422–30. https://doi.org/10.1002/ppul.24382
44. Mondal P., MidyaV., Khokhar A., Sathianathan S., Forno E. Predictors of diffusing capacity in children with sickle cell disease: a longitudinal study. Front. Pediatr. 2021; 9: 678174. https://doi.org/10.3389/fped.2021.678174
45. Satrell E., Clemm H., Røksund O.R., Hufthammer K.O., Thorsen E., Halvorsen T., et al. Development of lung diffusion to adulthood following extremely preterm birth. Eur. Respir. J. 2022; 59(5): 2004103. https://doi.org/10.1183/13993003.04103-2020
46. Villa M.P., Montesano M., Barreto M. Diffusing capacity for carbon monoxide in children with type 1 diabetes. Diabetologiya. 2004; 47(11): 1931–5. https://doi.org/10.1007/s00125-004-1548-7
47. Mirić M., Turkalj M., Nogalo B., Erceg D., Perica M., Plavec D. Lung diffusion capacity in children with respiratory symptoms and untreated GERD. Med. Sci. Monit. 2014; 20: 774–81. https://doi.org/10.12659/MSM.890336
48. Hildebrandt J., Rahn A., Kessler A. Lung clearance index and diffusion capacity for CO to detect early functional pulmonary impairment in children with rheumatic diseases. Pediatr. Rheumatol. 2021; 19(1): 23. https://doi.org/10.1186/s12969-021-00509-1
49. Attanasi M., Lucantoni M., Rapino D., Petrosino M.I., Marsili M., Gasparroni G., et al. Lung function in children with juvenile idiopathic arthritis: a cross-sectional analysis. Pediatr. Pulmonol. 2019; 54(8): 1242–9.
50. Fretzayas A., Loukou I., Moustaki M., Douros K. Correlation of computed tomography findings and lung function in children and adolescents with cystic fibrosis. World J. Pediatr. 2021; 17(3): 221–6. https://doi.org/10.1007/s12519-020-00388-8
51. Espiritu J.D., Ruppel G., Shrestha Y., Kleinhenz M.E. The diffusing capacity in adult cystic fibrosis. Respir. Med. 2003; 97(6): 606–11. https://doi.org/10.1053/rmed.2003.1487
52. Chernyak A.V., Krasovskiy S.A., Naumenko Zh.K., Karchevskaya N.A., Tarabrin E.A., Neklyudova G.V., et al. Change in lung function of patients with cystic fibrosis underwent lung transplantation. Pul’monologiya. 2017; 27(2): 206–15. https://doi.org/10.18093/0869-0189-2017-27-2-206-215 (in Russian)
53. Ramos K.J., Smith P.J., McKone E.F., Pilewski J.M., Lucy A., Hempstead S.E., et al. Lung transplant referral for individuals with cystic fibrosis: Cystic Fibrosis Foundation consensus guidelines. J. Cyst. Fibros. 2019; 18(3): 321–33. https://doi.org/10.1016/j.jcf.2019.03.002
54. Leard L.E., Holm A.M., Valapour M., Glanville A.R., Attawar S., Aversa M., et al. Consensus document for the selection of lung transplant candidates: An update from the International Society for Heart and Lung Transplantation. J. Heart Lung. Transplant. 2021; 40(11): 1349–79. https://doi.org/10.1016/j.healun.2021.07.005
55. Alves C., Della-Manna T., Albuquerque C.T.M. Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment. J. Pediatr. Endocrinol. Metab. 2020; 33(7): 835–43. https://doi.org/10.1515/jpem-2019-0484
56. Prentice B.J., Jaffe A., Hameed S., Verge C.F., Waters S., Widger J. Cystic fibrosis-related diabetes and lung disease: an update. Eur. Respir. Rev. 2021; 30(159): 200293. https://doi.org/10.1183/16000617.0293-2020
57. Neklyudova G.V., Chernyak A.V. Diagnostic features of the measuring the lung diffusion capacity. Meditsinskiy alfavit. 2020; (25): 22–5. https://doi.org/10.33667/2078-5631-2020-25-22-25 (in Russian)
58. Wheatley C.M., Foxx-Lupo W.T., Cassuto N.A., Wong E.C., Daines C.L., Morgan W.J., et al. Impaired lung diffusing capacity for nitric oxide and alveolar-capillary membrane conductance results in oxygen desaturation during exercise in patients with cystic fibrosis. J. Cyst. Fibros. 2011; 10(1): 45–53. https://doi.org/10.1016/j.jcf.2010.09.006
59. Wagener J.S., VanDevanter D.R., Konstan M.W., Pasta D.J., Millar S.J., Morgan W.J. Lung function changes before and after pulmonary exacerbation antimicrobial treatment in cystic fibrosis. Pediatr. Pulmonol. 2020; 55(3): 828–34. https://doi.org/10.1002/ppul.24577
60. Bartley B.L., Schwartz C.E., Stark R.B., Georgiopoulos A.M., Friedman D., Richards C.J., et al. Lung transplant referral practice patterns: a survey of cystic fibrosis physicians and general pulmonologists. BMC Pulm. Med. 2020; 20(1): 58. https://doi.org/10.1186/s12890-020-1067-4
Review
For citations:
Bystrova S.G. Features of determining the diffusion capacity of the lungs by carbon monoxide in cystic fibrosis children. Russian Pediatric Journal. 2022;25(5):350-356. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-5-350-356. EDN: eybiha