Preview

Russian Pediatric Journal

Advanced search

Rotavirus infection in children: clinical and etiological structure and analysis of vaccine prophylaxis

https://doi.org/10.46563/1560-9561-2023-26-1-22-26

EDN: okwpxi

Abstract

Among all hospitalizations of children with acute enteral infection (AEI), 20 to 60% are associated with rotavirus infection (RVI). The high intensity of the spread of the epidemic process and mortality from RVI indicates to the need for vaccination.

Aim: to assess the state of vaccination and study the clinical and etiological structure of RVI in children in-patients in the city of Krasnodar.

Materials and methods. There was performed the single-stage retrospective analysis of 505 case histories of acute AEI 0–18 years children (boys/girls: 267/238) admitted to the Children’s City Clinical Hospital in Krasnodar (2020). The state of vaccination (2013–2020) was studied on the base of the vaccination center in the Children’s City Clinical Hospital in Krasnodar.

Results. The number of immunized 6552 increased from 10 (2013) to 1460 (2020). Vaccination coverage in 2020 was 5.9% of the target cohort. Less than 1% of adverse events after immunization have been reported. In the AEI structure, 140 cases of RVI (27.7%) were registered: mono-RVI 50 (35.7%), mixed-RVI 90 (64.3%). Mixed-RVI included noro-RVI (67.9% cases), noro-adeno-RVI (17.8%), adeno-RVI (3.3%), salmonella-noro-RVI (3.3%), salmonella-RVI, salmonella-noro-adeno-RVI, campylobacteria-noro-RVI (2.2%) and escherichio-RVI (1.1%). The age structure of the Republic of Ingushetia was dominated by children under 1 year — 59.3%, 1–3 years old — 21.4%, 4–6 years old — 7.2%, 7–18 years old — 12.1%. Mono-RVI occurred in the form of gastroenteritis in moderate (78%) and severe (22%) forms with varying degrees of dehydration (stage I — 74%, stage II — 4%, stage III — 22%). Mixed RVI occurred in the form of gastroenteritis 80 (88.9%) and enterocolitis 10 (11.1%) in moderate (81%) and severe (19%) forms with stage I exsicosis (63%), II Art. (18%), III Art. (19%). Among all hospitalized children, none were as vaccinated against RVI.

Conclusion. The high intensity of the spread of the epidemic process in RVI indicates the need for vaccination.

Contribution:
Sutovskaya D.V., Burlutskaya A.V. — the concept and design of the study;
Sutovskaya D.V., Tetenkova A.A., Litvinskaya M.A., Naumenko G.V. — collection and processing of material;
Sutovskaya D.V., Epinetova A.A. — statistical processing;
Sutovskaya D.V., Krylova D.R. — writing the text;
Sutovskaya D.V., Burlutskaya A.V. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: December 19, 2022
Accepted: January 17, 2023
Published: February 28, 2023

About the Authors

Diana V. Sutovskaya
Kuban State Medical University
Russian Federation

MD, PhD, Associate Professor of the Department of Pediatrics No. 2, Kuban State Medical University of the Ministry of Health of the Russian Federation, Krasnodar, 350063, Russian Federation.

e-mail: dsutovskaya@bk.ru



Alla V. Burlutskaya
Kuban State Medical University
Russian Federation


Daria R. Krylova
Kuban State Medical University
Russian Federation


Anastasia A. Tetenkova
Children’s City Clinical Hospital
Russian Federation


Marina A. Litvinskaya
Children’s City Clinical Hospital
Russian Federation


Galina V. Naumenko
Kuban State Medical University; Children’s City Clinical Hospital
Russian Federation


Alena A. Epinetova
Kuban State Medical University
Russian Federation


References

1. Zhao S., Jin X., Zang L., Liu Z., Wen X., Ran X. Global infection rate of rotavirus C during 1980-2022 and analysis of critical factors in the host range restriction of virus VP4. Viruses. 2022; 14(12): 2826. https://doi.org/10.3390/v14122826

2. Caddy S., Papa G., Borodavka A., Desselberger U. Rotavirus research: 2014–2020. Virus Res. 2021; 304: 198499. https://doi.org/10.1016/j.virusres.2021.198499

3. Omatola C.A., Olaniran A.O. Rotaviruses: from pathogenesis to disease control – a critical review. Viruses. 2022; 14(5): 875. https://doi.org/10.3390/v14050875

4. Chen S.C., Tan L.B., Huang L.M., Chen K.T. Rotavirus infection and the current status of rotavirus vaccines. J. Formos. Med. Assoc. 2012; 111(4): 183–93. https://doi.org/10.1016/j.jfma.2011.09.024

5. Sadiq A., Bostan N., Yinda K.C., Naseem S., Sattar S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev. Med. Virol. 2018; 28(6): e2003. https://doi.org/10.1002/rmv.2003

6. Bányai K., Estes M.K., Martella V., Parashar U.D. Viral gastroenteritis. Lancet. 2018; 392(10142): 175–86. https://doi.org/10.1016/S0140-6736(18)31128-0

7. Lee B., Damon C.F., Platts-Mills J.A. Pediatric acute gastroenteritis associated with adenovirus 40/41 in low-income and middle-income countries. Curr. Opin. Infect. Dis. 2020; 33(5): 398–403. https://doi.org/10.1097/QCO.0000000000000663

8. Tarris G., de Rougemont A., Charkaoui M., Michiels C., Martin L., Belliot G. Enteric viruses and inflammatory bowel disease. Viruses. 2021; 13(1): 104. https://doi.org/10.3390/v13010104

9. Mizutani T., Aboagye S.Y., Ishizaka A., Afum T., Mensah G.I., Asante-Poku A., et al. Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Sci. Rep. 2021; 11(1): 13945. https://doi.org/10.1038/s41598-021-93345-y

10. Dian Z., Sun Y., Zhang G., Xu Y., Fan X., Yang X., et al. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit. Rev. Microbiol. 2021; 47(5): 580–95. https://doi.org/10.1080/1040841X.2021.1907738

11. Sun Z.W., Fu Y., Lu H.L., Yang R.X., Goyal H., Jiang Y., et al. Association of rotavirus vaccines with reduction in rotavirus gastroenteritis in children younger than 5 years: a systematic review and meta-analysis of randomized clinical trials and observational studies. JAMA Pediatr. 2021; 175(7): e210347. https://doi.org/10.1001/jamapediatrics.2021.0347

12. Kim A.H., Hogarty M.P., Harris V.C., Baldridge M.T. The complex interactions between rotavirus and the gut microbiota. Front. Cell. Infect. Microbiol. 2021; 10: 586751. https://doi.org/10.3389/fcimb.2020.586751

13. Tatochenko V.K. Rotavirus vaccination. Meditsinskiy sovet. 2016; (7): 36–8. https://doi.org/10.21518/2079-701X-2016-07-36-38 (in Russian)

14. Komoto S., Fukuda S., Murata T., Taniguchi K. Human rotavirus reverse genetics systems to study viral replication and pathogenesis. Viruses. 2021; 13(9): 1791. https://doi.org/10.3390/v13091791

15. Gómez-Rial J., Rivero-Calle I., Salas A., Martinón-Torres F. Rotavirus and autoimmunity. J. Infect. 2020; 81(2): 183–9. https://doi.org/10.1016/j.jinf.2020.04.041

16. Uprety T., Wang D., Li F. Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch. Virol. 2021; 166(9): 2369–86. https://doi.org/10.1007/s00705-021-05142-7

17. Paula F.L., Sardi S.I., Tigre D.M., Fernandes F.M.C., Campos G.S. Acute gastroenteritis associated with norovirus GII.4 variants. Arq. Gastroenterol. 2018; 55(3): 264–6. https://doi.org/10.1590/S0004-2803.201800000-67

18. Hartman S., Brown E., Loomis E., Russell H.A. Gastroenteritis in children. Am. Fam. Physician. 2019; 99(3): 159–65.

19. Zhou H., Wang S., von Seidlein L., Wang X. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes. Front. Med. 2020; 14(1): 1–7. https://doi.org/10.1007/s11684-019-0733-5

20. Cheng H.Y., Lee C.C., Chang Y.C., Tsai C.N., Chao H.C., Tsai Y.T., et al. Viral shedding in gastroenteritis in children caused by variants and novel recombinant norovirus infections. Medicine (Baltimore). 2021; 100(12): e25123. https://doi.org/10.1097/MD.0000000000025123

21. Lucero Y., Matson D.O., Ashkenazi S., George S., O’Ryan M. Norovirus: facts and reflections from past, present, and future. Viruses. 2021; 13(12): 2399. https://doi.org/10.3390/v13122399

22. Quintero-Ochoa G., Romero-Argüelles R., Aviles-Hernández A., Cejudo-Flores M., Calleja-García P., Domínguez-Gámez M., et al. Viral agents of gastroenteritis and their correlation with clinical symptoms in rotavirus-vaccinated children. Infect. Genet. Evol. 2019; 73: 190–6. https://doi.org/10.1016/j.meegid.2019.05.002

23. Malhotra A., Sturgill M., Whitley-Williams P., Lee Y.H., Esochaghi C., Rajasekhar H., et al. Pediatric COVID-19 and appendicitis: a gut reaction to SARS-CoV-2? Pediatr. Infect. Dis. J. 2021; 40(2): e49–55. https://doi.org/10.1097/INF.0000000000002998

24. Carvalho M.F., Gill D. Rotavirus vaccine efficacy: current status and areas for improvement. Hum. Vaccin. Immunother. 2019; 15(6): 1237–50. https://doi.org/10.1080/21645515.2018.1520583

25. Offit P.A. Challenges to developing a rotavirus vaccine. Viral Immunol. 2018; 31(2): 104–8. https://doi.org/10.1089/vim.2017.0121

26. Pollard S.L., Malpica-Llanos T., Frigerg I.K., Fischer-Walker C., Ashraf S., Walker N. Estimating the herd immunity effect of rotavirus vaccine. Vaccine. 2015; 33(32): 3795–800. https://doi.org/10.1016/j.vaccine.2015.06.064

27. Mazankova L.N., Gorbunov S.G., Bitkova O.S. Prospects of vaccine prophylaxis of rotavirus infection. Praktika pediatra. 2020; (3): 59–62. (in Russian)

28. Mayanskiy N.A., Mayanskiy A.N., Kulichenko T.V. Rotavirus infection: epidemiology, pathology, vaccination. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2015; 70(1): 47–54. https://doi.org/10.15690/vramn.v70i1.1231 (in Russian)

29. Rychkova O.A., Kazakevich G.V., Dubinina O.A., Sharukho G.V., Kurbatsaya M.A., Ivanova G.N., et al. Prevention of rotavirus infection: the way of expansion of the regional vaccination program in Tyumen region. Farmateka. 2016; (11): 106–11. (in Russian)

30. Rudakova A.V., Kharit S.M., Uskov A.N., Lobzin Yu.V. Assessment of reduction of rotavirus infection burden in case of vaccination with a pentavalent vaccine in Russian Federation. Zhurnal infektologii. 2014; 6(2): 71–5. (in Russian)

31. Ndwandwe D., Runeyi S., Mathebula L., Wiysonge C. Rotavirus vaccine clinical trials: a cross-sectional analysis of clinical trials registries. Trials. 2022; 23(1): 945. https://doi.org/10.1186/s13063-022-06878-6

32. Wilber E., Baker J.M., Rebolledo P.A. Clinical implications of multiplex pathogen panels for the diagnosis of acute viral gastroenteritis. J. Clin. Microbiol. 2021; 59(8): e0151319. https://doi.org/10.1128/JCM.01513-19

33. Babaei A., Rafiee N., Taheri B., Sohrabi H., Mokhtarzadeh A. Recent advances in early diagnosis of viruses associated with gastroenteritis by biosensors. Biosensors (Basel). 2022; 12(7): 499. https://doi.org/10.3390/bios12070499

34. Bergman H., Henschke N., Hungerford D., Pitan F., Ndwandwe D., Cunliffe N., et al. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst. Rev. 2021; 11(11): CD008521. https://doi.org/10.1002/14651858.CD008521.pub6

35. Sadiq A., Bostan N., Jadoon Khan, Aziz A. Effect of rotavirus genetic diversity on vaccine impact. Rev. Med. Virol. 2022; 32(1): e2259. https://doi.org/10.1002/rmv.2259


Review

For citations:


Sutovskaya D.V., Burlutskaya A.V., Krylova D.R., Tetenkova A.A., Litvinskaya M.A., Naumenko G.V., Epinetova A.A. Rotavirus infection in children: clinical and etiological structure and analysis of vaccine prophylaxis. Russian Pediatric Journal. 2023;26(1):22-26. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-1-22-26. EDN: okwpxi

Views: 140


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)