Preview

Russian Pediatric Journal

Advanced search

Changes in the gut microbiota in autism in children: pathogenetic significance and ways of correction

https://doi.org/10.46563/1560-9561-2023-26-5-360-367

EDN: dhofeq

Abstract

A systematic review of data on the interrelationship between the gut microbiota and autism spectrum disorder (ASD) in children is presented. The search was conducted in Pubmed, Google Academic, and Web of Science databases for the keywords: autism, autism spectrum disorder, gut microbiota. Articles published between January 2000 and August 2023 were reviewed, and preference was given to data obtained in recent years. It was found that 40% of ASD children have various forms and severity of manifestations of gastrointestinal dysfunction (constipation, diarrhea, chronic abdominal pain, etc.), which accompany psychopathological symptoms and correlate with the severity of ASD. Disorders of the intestinal microbiota are detected in more than 80% of cases of ASD in children. At the same time, it was found that representatives of the fila Firmicutes, Bacteroidetes and Proteobacteria are the most common in the intestinal microbiota in ASD children, although their qualitative and quantitative ratios in ASD differ. In patients with ASD, a decrease in the content of representatives of the phylum Firmicutes and a relatively high prevalence of Bacteroidetes producing short-chain fatty acids were revealed, due to this, they can influence the central nervous system and behaviour in autism. Differences in the biodiversity of the intestinal microbiota in ASD are determined by heterogeneity of demographic and geographical characteristics, differences in diet, concomitant forms of pathology, severity of behavioural and gastrointestinal symptoms, different methods of analysis and treatment. Modification of the intestinal microbiome by fecal microbiota transplantation is potentially the most promising way to improve gastrointestinal and behavioural symptoms in ASD children.

Contribution:
Smirnova G.I. — concept and design of the work;
Mulenkova A.V., Susloparova P.S. — collection and processing of the material;
Smirnova G.I., Mulenkova A.V., Susloparova P.S. — writing the text;
Korsunsky A.A. — editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: August 23, 2023
Accepted: September 12, 2023
Published: October 31, 2023

About the Authors

Galina I. Smirnova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation

MD, PhD, DSci., Prof., Professor of the Department of pediatrics and pediatric infectious diseases of the N.F. Filatov Clinical Institute for Child Health of Sechenov University, Moscow, 119991, Russian Federation.

e-mail: gismirnova@yandex.ru



Alena V. Mulenkova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation


Polina S. Susloparova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation


Anatoliy A. Коrsunskiy
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation


References

1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., et al. Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018; 67(6): 1–23. https://doi.org/10.15585/mmwr.ss6706a1

2. Pretorius I.M. Developmental disturbance or autistic spectrum disorder? Early intervention in a psychotherapeutic parent-toddler group. Prax. Kinderpsychol. Kinderpsychiatr. 2022; 71(3): 245–60. https://doi.org/10.13109/prkk.2022.71.3.245 (in German)

3. Freitag C.M., Poustka L., Kamp-Becker I., Vogeley K., Tebartz van Elst L. Transition in autism spectrum disorders. Z. Kinder Jugendpsychiatr. Psychother. 2020; 48(6): 440–2. https://doi.org/10.1024/1422-4917/a000715 (in German)

4. Kloidt B., Blatz L., Flemming M., von Spee L., Giersdorf M. Challenges and influencial factors in autism-specific diagnostics in toddlers. Z. Kinder Jugendpsychiatr. Psychother. 2023; 51(1): 41–50. https://doi.org/10.1024/1422-4917/a000890 (in German)

5. Sanders S.J., He X., Willsey A.J., Ercan-Sencicek A.G., Samocha K.E., Cicek A.E., et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015; 87(6): 1215–33. https://doi.org/10.1016/j.neuron.2015.09.016

6. Weiss L.A., Arking D.E., Daly M.J., Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009; 461(7265): 802–8. https://doi.org/10.1038/nature08490

7. Arnett A.B., Trinh S., Bernier R.A. The state of research on the genetics of autism spectrum disorder: methodological, clinical and conceptual progress. Curr. Opin. Psychol. 2019; 27: 1–5. https://doi.org/10.1016/j.copsyc.2018.07.004

8. Yates D. Neurogenetics: Unravelling the genetics of autism. Nat. Rev. Neurosci. 2012; 13(6): 359. https://doi.org/10.1038/nrn3259

9. Muers M. Human genetics: Fruits of exome sequencing for autism. Nat. Rev. Genet. 2012; 13(6): 377. https://doi.org/10.1038/nrg3248

10. Sanders S.J., Murtha M.T., Gupta A.R., Murdoch J.D., Raubeson M.J., Willsey A.J., et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012; 485(7397): 237–41. https://doi.org/10.1038/nature10945

11. Wroten M., Yoon S., Andrews P., Yamrom B., Ronemus M., Buja A., et al. Sharing parental genomes by siblings concordant or discordant for autism. Cell Genom. 2023; 3(6): 100319. https://doi.org/10.1016/j.xgen.2023.100319

12. Achenbach T.M., Ruffle T.M. The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr. Rev. 2000; 21(8): 265–71. https://doi.org/10.1542/pir.21-8-265

13. Arias A.A., Rea M.M., Adler E.J., Haendel A.D., Van Hecke A.V. Utilizing the Child Behavior Checklist (CBCL) as an autism spectrum disorder preliminary screener and outcome measure for the PEERS® intervention for autistic adolescents. J. Autism Dev. Disord. 2022; 52(5): 2061–74. https://doi.org/10.1007/s10803-021-05103-8

14. Offermans J.E., de Bruin E.I., Lange A.M.C., Middeldorp C.M., Wesseldijk L.W., Boomsma D.I., et al. The development and validation of a subscale for the school-age Child Behavior CheckList to screen for autism spectrum disorder. J. Autism Dev. Disord. 2023; 53(3): 1034–52. https://doi.org/10.1007/s10803-022-05465-7

15. Kassabian B., Fenger C.D., Willems M., Aledo-Serrano A., Linnankivi T., McDonnell P.P., et al. Intrafamilial variability in SLC6A1-related neurodevelopmental disorders. Front. Neurosci. 2023; 17: 1219262. https://doi.org/10.3389/fnins.2023.1219262

16. Wang H., Liang S., Wang M., Gao J., Sun C., Wang J., et al. Potential serum biomarkers from a metabolomics study of autism. J. Psychiatry Neurosci. 2016; 41(1): 27–37. https://doi.org/10.1503/jpn.140009

17. Gan H., Su Y., Zhang L., Huang G., Lai C., Lv Y., et al. Questionnaire-based analysis of autism spectrum disorders and gastrointestinal symptoms in children and adolescents: a systematic review and meta-analysis. Front. Pediatr. 2023; 11: 1120728. https://doi.org/0.3389/fped.2023.1120728

18. Settanni C.R., Bibbò S., Ianiro G., Rinninella E., Cintoni M., Mele M.C., et al. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev. Gastroenterol. Hepatol. 2021; 15(6): 599–622. https://doi.org/10.1080/17474124.2021.1869938

19. Li Q., Zhou J.M. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016; 324: 131–9. https://doi.org/10.1016/j.neuroscience.2016.03.013

20. Srikantha P., Mohajeri M.H. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci. 2019; 20(9): 2115. https://doi.org/10.3390/ijms20092115

21. Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., et al. The microbiota-gut-brain axis. Physiol. Rev. 2019; 99(4): 1877–2013. https://doi.org/10.1152/physrev.00018.2018

22. Rogers J.B., Keating D.J., Yang R.L., Wong M.L., Licinio J., Wesseling S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry. 2016; 21(6): 738–48. https://doi.org/10.1038/mp.2016.50

23. Bezawada N., Phang T.H., Hold G.L., Hansen R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann. Nutr. Metab. 2020; 76(1): 16–29. https://doi.org/10.1159/000505363

24. Alharthi A., Alhazmi S., Alburae N., Bahieldin A. The human gut microbiome as a potential factor in autism spectrum disorder. Int. J. Mol. Sci. 2022; 23(3): 1363. https://doi.org/10.3390/ijms23031363

25. Averina O.V., Danilenko V.N. Human intestinal microbiota: Role in development and functioning of the nervous system. Mikrobiologiya. 2017; 86(1): 1–18. https://doi.org/10.1134/S0026261717010040 https://elibrary.ru/yvfumh

26. Fattorusso A., Di Genova L., Dell’Isola G., Mencaroni E., Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019; 11(3): 521. https://doi.org/10.3390/nu11030521

27. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–31. https://doi.org/10.1016/j.anaerobe.2017.12.007

28. Li N., Yang J., Zhang J., Liang C., Wang Y., Chen B., et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics. 2019; 17(1): 26–38. https://doi.org/10.1016/j.gpb.2019.01.002

29. Blagonravova A.S., Zhilyaeva T.V., Kvashnina D.V. Dysbiosis of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Part 1. Features of intestinal microbiota in autism spectrum disorders. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(1): 65–72. https://doi.org/10.36233/0372-9311-62 https://elibrary.ru/vdnevm (in Russian)

30. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015; 6(3): 207–13. https://doi.org/10.1080/19490976.2015.10358555

31. Bezrodnyy S.L. Gut microbiota and autistic spectrum disorder in children. Interconnection, mechanisms, recommendations. Rossiyskiy pediatricheskiy zhurnal. 2019; 22(1): 51–6. https://doi.org/10.18821/1560-9561-2019-22-1-51-56 https://elibrary.ru/ouvsam (in Russian)

32. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24. https://doi.org/10.1186/s40168-017-0242-1

33. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010; 16(4): 444–53. https://doi.org/10.1016/j.anaerobe.2010.06.008

34. Odamaki T., Kato K., Sugahara H., Hashikura N., Takahashi S., Xiao J., et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016; 16: 90. https://doi.org/10.1186/s12866-016-0708-5

35. Liu J., Gao Z., Liu C., Liu T., Gao J., Cai Y., et al. Alteration of gut microbiota: New strategy for treating autism spectrum disorder. Front. Cell Dev. Biol. 2022; 10: 792490. https://doi.org/10.3389/fcell.2022.792490

36. Jung T.H., Han K.S. Imbalanced dietary intake alters the colonic microbial profile in growing rats. PLoS One. 2021; 16(6): e0253959. https://doi.org/10.1371/journal.pone.0253959

37. Berding K., Donovan S.M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 2018; 12: 515. https://doi.org/10.3389/fnins.2018.00515

38. Martin F.P.J., Sprenger N., Montoliu I., Rezzi S., Kochhar S., Nicholson J.K. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 2010; 9(10): 5284–95. https://doi.org/10.1021/pr100554m

39. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009; 1(6): 6ra14. https://doi.org/10.1126/scitranslmed.3000322

40. Hu T., Dong Y., He C., Zhao M., He Q. The gut microbiota and oxidative stress in Autism spectrum disorders (ASD). Oxid. Med. Cell. Longev. 2020; 2020: 8396708. https://doi.org/10.1155/2020/8396708

41. Dargenio V.N., Dargenio C., Castellaneta S., De Giacomo A., Laguardia M., Schettini F., et al. Intestinal barrier dysfunction and microbiota-gut-brain axis: possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients. 2023; 15(7): 1620. https://doi.org/10.3390/nu15071620

42. Dinan T.G., Cryan J.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017; 595(2): 489–503. https://doi.org/10.1113/JP273106

43. Rutsch A., Kantsjö J.B., Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. 2020; 11: 604179. https://doi.org/10.3389/fimmu.2020.604179

44. Etherton M., Földy C., Sharma M., Tabuchi K., Liu X., Shamloo M., et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl Acad. Sci. USA. 2011; 108(33): 13764–9. https://doi.org/10.1073/pnas.1111093108

45. Sharna S.S., Balasuriya G.K., Hosie S., Nithianantharajah J., Franks A.E., Hill-Yardin E.L. Altered caecal neuroimmune interactions in the neuroligin-3R451C mouse model of autism. Front. Cell. Neurosci. 2020; 14: 85. https://doi.org/10.3389/fncel.2020.00085

46. Wang X., Tang R., Wei Z., Zhan Y., Lu J., Li Z. The enteric nervous system deficits in autism spectrum disorder. Front. Neurosci. 2023; 17: 1101071. https://doi.org/10.3389/fnins.2023.1101071

47. Liang L., Saunders C., Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci. Nutr. 2023; 11(4): 1671–704. https://doi.org/10.1002/fsn3.3229

48. Li Q., Han Y., Dy A.B.C., Hagerman R.J. The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci. 2017; 11: 120. https://doi.org/10.3389/fncel.2017.00120

49. Esvap E., Ulgen K.O. Neuroinflammation, energy and sphingolipid metabolism biomarkers are revealed by metabolic modeling of autistic brains. Biomedicines. 2023; 11(2): 583. https://doi.org/10.3390/biomedicines11020583

50. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015: 277: 32–48. https://doi.org/10.1016/j.bbr.2014.07.027

51. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018; 23(6): 716–24. https://doi.org/10.1016/j.chom.2018.05.003

52. Chanpong A., Borrelli O., Thapar N. Recent advances in understanding the roles of the enteric nervous system. Fac. Rev. 2022; 11: 7. https://doi.org/10.12703/r/11-7

53. Kumar A., Saba J.D. Regulation of immune cell migration by Sphingosine-1-Phosphate. Cell. Mol. Biol. (OMICS). 2015; 61(2): 121.

54. Martín-Hernández D., Muñoz-López M., Tendilla-Beltrán H., Caso J.R., García-Bueno B., Menchén L., et al. Immune system and brain/intestinal barrier functions in psychiatric diseases: Is Sphingosine-1-phosphate at the helm? Int. J. Mol. Sci. 2023; 24(3): 12634. https://doi.org/10.3390/ijms241612634

55. Prinz M., Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 2014; 15(5): 300–12. https://doi.org/10.1038/nrn3722

56. Kang D.H., Ahn S., Chae J.W., Song J.S. Differential effects of two phosphodiesterase 4 inhibitors against lipopolysaccharide-induced neuroinflammation in mice. BMC Neurosci. 2023; 24(1): 39. https://doi.org/10.1186/s12868-023-00810-7

57. Heinken A., Ravcheev D.A., Baldini F., Heirendt L., Fleming R.M.T., Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019; 7(1): 75. https://doi.org/10.1186/s40168-019-0689-3

58. Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. USA. 2008; 105(6): 2117–22. https://doi.org/10.1073/pnas.0712038105

59. Ersöz Alan B., Gülerman F. The role of gut microbiota in autism spectrum disorder. Turk Psikiyatri Derg. 2019; 30(3): 210–9. (in Turkish)

60. Siracusano M., Arturi L., Riccioni A., Noto A., Mussap M., Mazzone L. Metabolomics: perspectives on clinical employment in autism spectrum disorder. Int. J. Mol. Sci. 2023; 24(17): 13404. https://doi.org/10.3390/ijms241713404

61. Chernov A.N. Pathophysiological mechanisms of autism in children. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2020; 120(3): 97–108. https://doi.org/10.17116/jnevro202012003197 https://elibrary.ru/ljurmj (in Russian)

62. Dunalska A., Rzeszutek M., Dębowska Z., Bryńska A. Comorbidity of bipolar disorder and autism spectrum disorder – review paper. Psychiatr. Pol. 2021; 55(6): 1421–31. https://doi.org/10.12740/PP/OnlineFirst/122350

63. Ming X., Stein T.P., Barnes V., Rhodes N., Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J. Proteome Res. 2012; 11(12): 5856–62. https://doi.org/10.1021/pr300910n

64. Jacobsen U.P., Nielsen H.B., Hildebrand F., Raes J., Sicheritz-Ponten T., Kouskoumvekaki I., et al. The chemical interactome space between the human host and the genetically defined gut metabotypes. ISME J. 2013; 7(4): 730–42. https://doi.org/10.1038/ismej.2012.141

65. Ha C.W., Lam Y.Y., Holmes A.J. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J. Gastroenterol. 2014; 20(44): 16498–517. https://doi.org/10.3748/wjg.v20.i44.16498

66. Ristori M.V., Quagliariello A., Reddel S., Ianiro G., Vicari S., Gasbarrini A., et al. Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients. 2019; 11(11): 2812. https://doi.org/10.3390/nu11112812

67. Kang D.W., Adams J.B., Coleman D.M., Pollard E.L., Maldonado J., McDonough-Means S., et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 2019; 9(1): 5821. https://doi.org/10.1038/s41598-019-42183-0

68. Attwood T. The Complete Guide to Asperger’s Syndrome. London, Philadelphia: Jessica Kingsley Publishers; 2007.


Review

For citations:


Smirnova G.I., Mulenkova A.V., Susloparova P.S., Коrsunskiy A.A. Changes in the gut microbiota in autism in children: pathogenetic significance and ways of correction. Russian Pediatric Journal. 2023;26(5):360-367. https://doi.org/10.46563/1560-9561-2023-26-5-360-367. EDN: dhofeq

Views: 299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)