Современные шкалы рисков в педиатрии и детской кардиохирургии как инструменты оценки качества медицинской помощи
https://doi.org/10.46563/1560-9561-2023-26-6-443-449
EDN: vhlmoo
Аннотация
Введение. В обзоре представлены характеристики современных шкал рисков в педиатрии. Проведён сравнительный анализ преимуществ и недостатков шкал рисков в детской кардиохирургии. Показано, что раннее выявление пациентов высокого риска является основой профилактики неблагоприятных исходов после кардиохирургических операций. Установлены возможности базовой шкалы Аристотеля (Aristotle Basic Complexity Score — ABC) как инструмента оценки качества хирургического лечения детей с врождёнными пороками сердца. Её детерминантами являются летальность, сложность послеоперационного периода, техническая сложность операции. Оценивали корреляцию между значениями шкалы ABC и её детерминантами. Если значения всех детерминант превышали верхний предел 95% доверительного интервала, пациента включали в группу высокого риска. Качество лечения оценивали по индексу производительности. Выявлена тесная корреляция между ABC и её детерминантами. Для шкалы ABC установлена высокая точность прогноза летального исхода, осложнений и технической сложности с оптимальным пороговым значением 6,5 балла. У пациентов с ABC выше порогового значения была большая вероятность смерти. Индекс производительности составил 0,56, аналогичные показатели зарубежных клиник — 0,46–0,62 балла.
Заключение. ABC и новые шкалы стратификации рисков после кардиохирургических операций у детей являются эффективными системами оценки результатов хирургического лечения пациентов с врождёнными пороками сердца разного уровня сложности, могут использоваться для определения качества хирургического лечения и выявления групп высокого риска.
Финансирование. Исследование не имело финансовой поддержки.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Поступила 20.10.2023
Принята к печати 28.11.2023
Опубликована 27.12.2023
Ключевые слова
Об авторе
Гульжан Искендировна СарсенбаеваКазахстан
Канд. мед. наук, кардиохирург, «Научный центр педиатрии и детской хирургии» Минздрава Республики Казахстан
e-mail: gulzhan75@mail.ru
Список литературы
1. Jacobs J.P., Wernovsky G., Elliott M.J. Analysis of outcomes for congenital cardiac disease: can we do better? Cardiol. Young. 2007; 17(Suppl. 2): 145–58. https://doi.org/10.1017/S1047951107001278
2. Dreher M., Min J., Mavroudis C., Ryba D., Ostapenko S., Melchior R., et al. Indexed oxygen delivery during pediatric cardiopulmonary bypass is a modifiable risk factor for postoperative acute kidney injury. J. Extra. Corpor. Technol. 2023; 55(3): 112–20. https://doi.org/10.1051/ject/2023029
3. Ortinau C.M., Wypij D., Ilardi D., Rofeberg V., Miller T.A., Donohue J., et al. Factors associated with attendance for cardiac neurodevelopmental evaluation. Pediatrics. 2023; 152(3): e2022060995. https://doi.org/10.1542/peds.2022-060995
4. Batsis M., Dryer R., Scheel A.M., Basu M., Figueroa J., Clarke S., et al. Early functional status change after cardiopulmonary resuscitation in a pediatric heart center: a single-center retrospective study. Pediatr. Cardiol. 2023; 44(8): 1674–83. https://doi.org/10.1007/s00246-023-03251-5
5. Weinberg A.C., Huang L., Jiang H., Tinloy B., Raskas M.D., Penna F.J., et al. Perioperative risk factors for major complications in pediatric surgery: A study in surgical risk assessment for children. J. Am. Coll Surg. 2011; 212(5): 768–78. https://doi.org/10.1016/j.jamcollsurg.2011.02.006
6. Rhee D.S., Salazar J.H., Zhang Y., Yang J., Yang J., Papandria D., et al. A novel multispecialty surgical risk score for children. Pediatric. 2013; 131(3): e829–36. https://doi.org/10.1542/peds.2012-2244
7. Тai D., Dick P., To T., Wright J.G. Development of pediatric comorbidity prediction model. Arch. Pediatr. Adolesc. Med. 2006; 160(3): 293–9. https://doi.org/10.1001/archpedi.160.3.293
8. Vogt A., Meyer S., Schäfers H.J., Weise J.J., Wagenpfeil S., Abdul-Khaliq H., et al. Standardized Treatment and Diagnostic Approach to Reduce Disease burden in the early postoperative phase in children with congenital heart defects-STANDARD study: a pilot randomized controlled trial. Eur. J. Pediatr. 2023. https://doi.org/10.1007/s00431-023-05191-x
9. Stewart L.A., Hernan R.R., Mardy C., Hahn E., Chung W.K., Bacha E.A., et al. Congenital heart disease with congenital diaphragmatic hernia: surgical decision making and outcomes. J. Pediatr. 2023; 260: 113530. https://doi.org/10.1016/j.jpeds.2023.113530
10. Alzahrani A., Alahmadi R.A., Alghamdi S.K., AlQurashi R.A., Al-Hindi M.Y. Determinants of acute kidney injury in children undergoing cardiopulmonary bypass: single-center experience in Saudi Arabia. Cureus. 2022; 14(12): e32666. https://doi.org/10.7759/cureus.32666
11. Elgersma K.M., Trebilcock A.L., Whipple M.O., Tanner L.R., Pilditch S.J., Shah K.M., et al. Risk factors for tube feeding at discharge in infants undergoing neonatal surgery for congenital heart disease: a systematic review. Pediatr. Cardiol. 2023; 44(4): 769–94. https://doi.org/10.1007/s00246-022-03049-x
12. Baehner T., Pruemm P., Vergnat M., Asfour B., Straßberger-Nerschbach N., Kirfel A., et al. Effects of on-table extubation after pediatric cardiac surgery. J. Clin. Med. 2022; 11(17): 5186. https://doi.org/10.3390/jcm11175186
13. Jiang R., Wolf S., Alkazemi M.H., Pomann G-M., Purves J.T., Wiener J.S., et al. The evaluation of three comorbidity indices in predicting postoperative complications and readmissions in pediatric urology. J. Pediatr. Urol. 2018; 14(3): 244.e1–7. https://doi.org/10.1016/j.jpurol.2017.12.019
14. Pollack M.M., Ruttimann U.E., Getson P.R. Pediatric risk of mortality (PRISM) score. Crit. Care. Med. 1988; 16(11): 1110–6. https://doi.org/10.1097/00003246-198811000-00006
15. Lacour-Gayet F., Clarke D., Jacobs J., Comas J., Daebritz S., Daenen W., et al. The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur. J. Cardiothorac. Surg. 2004; 25(6): 911–24. https://doi.org/10.1016/j.ejcts.2004.03.027
16. O’Brien S.M., Jacobs J.P., Clarke D.R., Maruszewski B., Jacobs M.L., Walters H.L., et al. Accuracy of the aristotle basic complexity score for classifying the mortality and morbidity potential of congenital heart surgery operations. Ann. Thorac. Surg. 2007; 84(6): 2027–37. https://doi.org/10.1016/j.athoracsur.2007.06.031
17. Al-Radi O.O., Harrell F.E., Caldarone C.A., McCrindle B.W., Jacobs J.P., Williams M.G., et al. Case complexity scores in congenital heart surgery: a comparative study of the Aristotle basic complexity score and the risk adjustment in congenital heart surgery (RACHS-1) system. J. Thorac. Cardiovasc. Surg. 2007; 133(4): 865–75. https://doi.org/10.1016/j.jtcvs.2006.05.071
18. Jacobs M.L., Jacobs J.P., Jenkins K.J., Gauvreau K., Clarke D.R., Lacour-Gayet F. Stratification of complexity: the risk adjustment for congenital heart Surgery-1 method and the Aristotle Complexity Score – past, present, and future. Cardiol. Young. 2008; 18(Suppl. 2): 163–8. https://doi.org/10.1017/S1047951108002904
19. Taori R.N., Lahiri K.R., Tullu M.S. Performance of PRISM (Pediatric Risk of Mortality) score and PIM (Pediatric Index of Mortality) score in a tertiary care pediatric ICU. Indian J. Pediatr. 2010; 77(3): 267–71. https://doi.org/10.1007/s12098-010-0031-3
20. Balkin E.M., Zinter M.S., Rajagopal S.K., Keller R.L., Fineman J.R., Steurer M.A. Intensive care mortality prognostic model for pediatric pulmonary hypertension. Pediatr. Crit. Care Med. 2018; 19(8): 733–40. https://doi.org/10.1097/PCC.0000000000001636
21. Cavalcanti P.E.F., de Oliveira Sá M.P.B., dos Santos C.A., Esmeraldo I.M., Chaves M.L., de Albuquerque Lins R.F., et al. Stratification of complexity in congenital heart surgery: comparative study of the Risk Adjustment for Congenital Heart Surgery (RACHS-1) method, Aristotle basic score and Society of Thoracic Surgeons-European Association for Cardio- Thoracic Surgery (STS-EACTS) mortality score. Rev. Bras. Cir. Cardiovasc. 2015; 30(2): 148–58. https://doi.org/10.5935/1678-9741.20150001
22. O’Brien S.M., Clarke D.R., Jacobs J.P., Jacobs M.L., Lacour-Gayet F.G., Pizarro C., et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J. Thorac. Cardiovasc. Surg. 2009; 138(5): 1139–53. https://doi.org/10.1016/j.jtcvs.2009.03.071
23. Tejwani R., Lee H.J., Hughes T.L., Hobbs K.T., Aksenov L.I., Scales C.D., et al. Predicting postoperative complications in pediatric surgery: A novel pediatric comorbidity index. J. Pediatr. Urol. 2022; 18(3): 291–301. https://doi.org/10.1016/j.jpurol.2022.03.007
24. Jacobs J.P., Jacobs M.L., Mavroudis C., Backer C.L., Lacour-Gayet F.G., Tchervenkov C.I., et al. Nomenclature and databases for the surgical treatment of congenital cardiac disease – an updated primer and an analysis of opportunities for improvement. Cardiol. Young. 2008; 18(Suppl. 2): 38–62. https://doi.org/10.1017/S1047951108003028
25. Kogon B., Oster M. Assessing surgical risk for adults with congenital heart disease: are pediatric scoring systems appropriate? J. Thorac. Cardiovasc. Surg. 2014; 147(2): 666–71. https://doi.org/10.1016/j.jtcvs.2013.09.053
26. Hörer J., Kasnar-Samprec J., Cleuziou J., Strbad M., Wottke M., Kaemmerer H., et al. Mortality following congenital heart surgery in adults can be predicted accurately by combining expert-based and evidence-based pediatric risk scores. World J. Pediatr. Congenit. Heart Surg. 2016; 7(4): 425–35. https://doi.org/10.1177/2150135116656001
27. Reps J.M., Rijnbeek P., Cuthbert A., Ryan P.B., Pratt N., Schuemie M. An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design. BMC Med. Inform. Decis. Mak. 2021; 21(1): 43. https://doi.org/10.1186/s12911-021-01408-x
28. Khlevner J., Naranjo K., Hoyer C., Carullo A.S., Kerr K.W., Marriage B. Healthcare burden associated with malnutrition diagnoses in hospitalized children with critical illnesses. Nutrients. 2023; 15(13): 3011. https://doi.org/10.3390/nu15133011
29. Niehaus I.M., Kansy N., Stock S., Dötsch J., Müller D. Applicability of predictive models for 30-day unplanned hospital readmission risk in paediatrics: a systematic review. BMJ Open. 2022; 12(3): e055956. https://doi.org/10.1136/bmjopen-2021-055956
30. Kang N., Cole T., Tsang V., Elliott M., de Leval M. Risk stratification in paediatric open-heart surgery. Eur. J. Cardiothorac. Surg. 2004; 26(1): 3–11. https://doi.org/10.1016/j.ejcts.2004.03.038
31. Golfenshtein N., Lisanti A.J., Medoff-Cooper B. Infant’s difficult temperament characteristics predict poor quality of life in parents of infants with complex CHDs post-cardiac surgery. Cardiol. Young. 2023; 33(8): 1316–21. https://doi.org/10.1017/S1047951122001895
32. Lisanti A.J., Min J., Golfenshtein N., Ravishankar C., Costello J.M., Huang L., et al. New insights on growth trajectory in infants with complex congenital heart disease. J. Pediatr. Nurs. 2022; 66: 23–9. https://doi.org/10.1016/j.pedn.2022.05.003
33. Delaplain P.T., Ehwerhemuepha L., Nguyen D.V., Di Nardo M., Jancelewicz T., Awan S., et al. The development of multiorgan dysfunction in CDH-ECMO neonates is associated with the level of pre-ECMO support. J. Pediatr. Surg. 2020; 55(5): 830–4. https://doi.org/10.1016/j.jpedsurg.2020.01.026
34. Elassal A.A., Al-Radi O.O., Debis R.S., Zaher Z.F., Abdelmohsen G.A., Faden M.S., et al. Neonatal congenital heart surgery: contemporary outcomes and risk profile. J. Cardiothorac. Surg. 2022; 17(1): 80. https://doi.org/10.1186/s13019-022-01830-w
35. Jyotsna K.R., Sharan S., Kishore S., Prakash J. The various scoring systems in pediatric intensive care units: a prospective observational study. Cureus. 2023; 15(5): e39679. https://doi.org/10.7759/cureus.39679
36. Acharya M., Berger R., Popov A.F. The role of the ADVanced Organ Support (ADVOS) system in critically ill patients with multiple organ failure. Artif. Organs. 2022; 46(5): 735–46. https://doi.org/10.1111/aor.14188
37. Habes Q.L.M., Kant N., Beunders R., van Groenendael R., Gerretsen J., Kox M., et al. Relationships between systemic inflammation, intestinal damage and postoperative organ dysfunction in adults undergoing low-risk cardiac surgery. Heart Lung. Circ. 2023; 32(3): 395–404. https://doi.org/10.1016/j.hlc.2022.12.006
38. Maisat W., Yuki K. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Ann. Card. Anaesth. 2023; 26(2): 133–42. https://doi.org/10.4103/aca.aca_147_22
39. Roeschl T., Hinrichs N., Hommel M., Pfahringer B., Balzer F., Falk V., et al. Systematic assessment of shock severity in postoperative cardiac surgery patients. J. Am. Coll. Cardiol. 2023; 82(17): 1691–706. https://doi.org/10.1016/j.jacc.2023.08.031
40. Волков С.С., Зеленикин М.А., Вульф К.А., Нармания И.Т., Гущин Д.К. Шкала Аристотеля в оценке качества хирургического лечения детей с врожденными пороками сердца. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2016; 17(4): 31–42. https://elibrary.ru/wmdlqp
41. Benscoter A.L., Alten J.A., Atreya M.R., Cooper D.S., Byrnes J.W., Nelson D.P., et al. Biomarker-based risk model to predict persistent multiple organ dysfunctions after congenital heart surgery: a prospective observational cohort study. Crit. Care. 2023; 27(1): 193. https://doi.org/10.1186/s13054-023-04494-7
42. Rezende R.Q., Ricachinevsky C.P., Botta A., Angeli V.R., Nogueira A.J.D.S. Assessment of PIM-2 performance among surgical patients with heart disease and correlation of results with RACHS-1. Rev. Bras. Ter. Intensiva. 2017; 29(4): 453–9. https://doi.org/10.5935/0103-507X.20170069
43. Tweddell J.S., Ghanayem N.S., Hoffman G.M. Pro: NIRS is “Standard of Care” for Postoperative Management. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2010; 13(1): 44–50. https://doi.org/10.1053/j.pcsu.2010.02.008
44. Benavidez O.J., Connor J.A., Gauvreau K., Jenkins K.J. The contribution of complications to high resource utilization during congenital heart surgery admissions. Congenit. Heart Dis. 2007; 2(5): 319–26. https://doi.org/10.1111/j.1747-0803.2007.00119.x
45. Benavidez O.J., Gauvreau K., Bacha E., Nido P.D., Jenkins K.J. Application of a complication screening method to congenital heart surgery admissions: a preliminary report. Pediatr. Cardiol. 2008; 29(2): 258–65. https://doi.org/10.1007/s00246-007-9110-2
Рецензия
Для цитирования:
Сарсенбаева Г.И. Современные шкалы рисков в педиатрии и детской кардиохирургии как инструменты оценки качества медицинской помощи. Российский педиатрический журнал. 2023;26(6):443-449. https://doi.org/10.46563/1560-9561-2023-26-6-443-449. EDN: vhlmoo
For citation:
Sarsenbaeva G.I. Modern risk scales in pediatrics and pediatric cardiac surgery as tools for assessing the quality of medical care. Russian Pediatric Journal. 2023;26(6):443-449. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-6-443-449. EDN: vhlmoo