Preview

Russian Pediatric Journal

Advanced search

Modern risk scales in pediatrics and pediatric cardiac surgery as tools for assessing the quality of medical care

https://doi.org/10.46563/1560-9561-2023-26-6-443-449

EDN: vhlmoo

Abstract

Introduction. The review presents the characteristics of modern risk scales in pediatrics. A comparative analysis of the advantages and disadvantages of risk scales in pediatric cardiac surgery has been carried out. Early detection of high-risk patients was shown to be the basis for the prevention of adverse outcomes after cardiac surgery. The capabilities of the Aristotle School (Aristotle Basic Complexity (ABC) Score have been established as a tool for assessing the quality of surgical treatment of children with congenital heart defects (CHD). Its determinants are mortality, the complexity of the postoperative period, and the technical complexity of the operation. The correlation between the values of the ABC scale and its determinants was evaluated. If the values of all three determinants exceeded the upper limit of the 95% confidence interval (CI), the patient was included in the high-risk group. The quality of treatment was assessed by the performance index (IP). A close correlation between ABC and its determinants has been revealed. For the ABC school, a high accuracy of the prognosis of death, complications, and technical complexity was established with an optimal threshold value of 6.5 points. Patients with ABC above the threshold were more likely to die. The IP was 0.56, similar indicators of foreign clinics ranged from 0.46 to 0.62 points.

Conclusion. The basic Aristotle scale and new risk stratification scales after cardiac surgery in children are effective systems for evaluating the results of surgical treatment of CHD patients of different levels of complexity can be used to determine the quality of surgical treatment and identify high-risk groups.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The author declares no conflict of interest.

Received: October 20, 2023
Accepted: November 28, 2023
Published: December 27, 2023

About the Author

Gulzhan I. Sarsenbaeva
Scientific Center of Pediatrics and Pediatric Surgery
Kazakhstan

MD, PhD, Scientific Center of Pediatrics and Pediatric Surgery, Almaty, 050044, Republic of Kazakhstan

e-mail: gulzhan75@mail.ru



References

1. Jacobs J.P., Wernovsky G., Elliott M.J. Analysis of outcomes for congenital cardiac disease: can we do better? Cardiol. Young. 2007; 17(Suppl. 2): 145–58. https://doi.org/10.1017/S1047951107001278

2. Dreher M., Min J., Mavroudis C., Ryba D., Ostapenko S., Melchior R., et al. Indexed oxygen delivery during pediatric cardiopulmonary bypass is a modifiable risk factor for postoperative acute kidney injury. J. Extra. Corpor. Technol. 2023; 55(3): 112–20. https://doi.org/10.1051/ject/2023029

3. Ortinau C.M., Wypij D., Ilardi D., Rofeberg V., Miller T.A., Donohue J., et al. Factors associated with attendance for cardiac neurodevelopmental evaluation. Pediatrics. 2023; 152(3): e2022060995. https://doi.org/10.1542/peds.2022-060995

4. Batsis M., Dryer R., Scheel A.M., Basu M., Figueroa J., Clarke S., et al. Early functional status change after cardiopulmonary resuscitation in a pediatric heart center: a single-center retrospective study. Pediatr. Cardiol. 2023; 44(8): 1674–83. https://doi.org/10.1007/s00246-023-03251-5

5. Weinberg A.C., Huang L., Jiang H., Tinloy B., Raskas M.D., Penna F.J., et al. Perioperative risk factors for major complications in pediatric surgery: A study in surgical risk assessment for children. J. Am. Coll Surg. 2011; 212(5): 768–78. https://doi.org/10.1016/j.jamcollsurg.2011.02.006

6. Rhee D.S., Salazar J.H., Zhang Y., Yang J., Yang J., Papandria D., et al. A novel multispecialty surgical risk score for children. Pediatric. 2013; 131(3): e829–36. https://doi.org/10.1542/peds.2012-2244

7. Тai D., Dick P., To T., Wright J.G. Development of pediatric comorbidity prediction model. Arch. Pediatr. Adolesc. Med. 2006; 160(3): 293–9. https://doi.org/10.1001/archpedi.160.3.293

8. Vogt A., Meyer S., Schäfers H.J., Weise J.J., Wagenpfeil S., Abdul-Khaliq H., et al. Standardized Treatment and Diagnostic Approach to Reduce Disease burden in the early postoperative phase in children with congenital heart defects-STANDARD study: a pilot randomized controlled trial. Eur. J. Pediatr. 2023. https://doi.org/10.1007/s00431-023-05191-x

9. Stewart L.A., Hernan R.R., Mardy C., Hahn E., Chung W.K., Bacha E.A., et al. Congenital heart disease with congenital diaphragmatic hernia: surgical decision making and outcomes. J. Pediatr. 2023; 260: 113530. https://doi.org/10.1016/j.jpeds.2023.113530

10. Alzahrani A., Alahmadi R.A., Alghamdi S.K., AlQurashi R.A., Al-Hindi M.Y. Determinants of acute kidney injury in children undergoing cardiopulmonary bypass: single-center experience in Saudi Arabia. Cureus. 2022; 14(12): e32666. https://doi.org/10.7759/cureus.32666

11. Elgersma K.M., Trebilcock A.L., Whipple M.O., Tanner L.R., Pilditch S.J., Shah K.M., et al. Risk factors for tube feeding at discharge in infants undergoing neonatal surgery for congenital heart disease: a systematic review. Pediatr. Cardiol. 2023; 44(4): 769–94. https://doi.org/10.1007/s00246-022-03049-x

12. Baehner T., Pruemm P., Vergnat M., Asfour B., Straßberger-Nerschbach N., Kirfel A., et al. Effects of on-table extubation after pediatric cardiac surgery. J. Clin. Med. 2022; 11(17): 5186. https://doi.org/10.3390/jcm11175186

13. Jiang R., Wolf S., Alkazemi M.H., Pomann G-M., Purves J.T., Wiener J.S., et al. The evaluation of three comorbidity indices in predicting postoperative complications and readmissions in pediatric urology. J. Pediatr. Urol. 2018; 14(3): 244.e1–7. https://doi.org/10.1016/j.jpurol.2017.12.019

14. Pollack M.M., Ruttimann U.E., Getson P.R. Pediatric risk of mortality (PRISM) score. Crit. Care. Med. 1988; 16(11): 1110–6. https://doi.org/10.1097/00003246-198811000-00006

15. Lacour-Gayet F., Clarke D., Jacobs J., Comas J., Daebritz S., Daenen W., et al. The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur. J. Cardiothorac. Surg. 2004; 25(6): 911–24. https://doi.org/10.1016/j.ejcts.2004.03.027

16. O’Brien S.M., Jacobs J.P., Clarke D.R., Maruszewski B., Jacobs M.L., Walters H.L., et al. Accuracy of the aristotle basic complexity score for classifying the mortality and morbidity potential of congenital heart surgery operations. Ann. Thorac. Surg. 2007; 84(6): 2027–37. https://doi.org/10.1016/j.athoracsur.2007.06.031

17. Al-Radi O.O., Harrell F.E., Caldarone C.A., McCrindle B.W., Jacobs J.P., Williams M.G., et al. Case complexity scores in congenital heart surgery: a comparative study of the Aristotle basic complexity score and the risk adjustment in congenital heart surgery (RACHS-1) system. J. Thorac. Cardiovasc. Surg. 2007; 133(4): 865–75. https://doi.org/10.1016/j.jtcvs.2006.05.071

18. Jacobs M.L., Jacobs J.P., Jenkins K.J., Gauvreau K., Clarke D.R., Lacour-Gayet F. Stratification of complexity: the risk adjustment for congenital heart Surgery-1 method and the Aristotle Complexity Score – past, present, and future. Cardiol. Young. 2008; 18(Suppl. 2): 163–8. https://doi.org/10.1017/S1047951108002904

19. Taori R.N., Lahiri K.R., Tullu M.S. Performance of PRISM (Pediatric Risk of Mortality) score and PIM (Pediatric Index of Mortality) score in a tertiary care pediatric ICU. Indian J. Pediatr. 2010; 77(3): 267–71. https://doi.org/10.1007/s12098-010-0031-3

20. Balkin E.M., Zinter M.S., Rajagopal S.K., Keller R.L., Fineman J.R., Steurer M.A. Intensive care mortality prognostic model for pediatric pulmonary hypertension. Pediatr. Crit. Care Med. 2018; 19(8): 733–40. https://doi.org/10.1097/PCC.0000000000001636

21. Cavalcanti P.E.F., de Oliveira Sá M.P.B., dos Santos C.A., Esmeraldo I.M., Chaves M.L., de Albuquerque Lins R.F., et al. Stratification of complexity in congenital heart surgery: comparative study of the Risk Adjustment for Congenital Heart Surgery (RACHS-1) method, Aristotle basic score and Society of Thoracic Surgeons-European Association for Cardio- Thoracic Surgery (STS-EACTS) mortality score. Rev. Bras. Cir. Cardiovasc. 2015; 30(2): 148–58. https://doi.org/10.5935/1678-9741.20150001

22. O’Brien S.M., Clarke D.R., Jacobs J.P., Jacobs M.L., Lacour-Gayet F.G., Pizarro C., et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J. Thorac. Cardiovasc. Surg. 2009; 138(5): 1139–53. https://doi.org/10.1016/j.jtcvs.2009.03.071

23. Tejwani R., Lee H.J., Hughes T.L., Hobbs K.T., Aksenov L.I., Scales C.D., et al. Predicting postoperative complications in pediatric surgery: A novel pediatric comorbidity index. J. Pediatr. Urol. 2022; 18(3): 291–301. https://doi.org/10.1016/j.jpurol.2022.03.007

24. Jacobs J.P., Jacobs M.L., Mavroudis C., Backer C.L., Lacour-Gayet F.G., Tchervenkov C.I., et al. Nomenclature and databases for the surgical treatment of congenital cardiac disease – an updated primer and an analysis of opportunities for improvement. Cardiol. Young. 2008; 18(Suppl. 2): 38–62. https://doi.org/10.1017/S1047951108003028

25. Kogon B., Oster M. Assessing surgical risk for adults with congenital heart disease: are pediatric scoring systems appropriate? J. Thorac. Cardiovasc. Surg. 2014; 147(2): 666–71. https://doi.org/10.1016/j.jtcvs.2013.09.053

26. Hörer J., Kasnar-Samprec J., Cleuziou J., Strbad M., Wottke M., Kaemmerer H., et al. Mortality following congenital heart surgery in adults can be predicted accurately by combining expert-based and evidence-based pediatric risk scores. World J. Pediatr. Congenit. Heart Surg. 2016; 7(4): 425–35. https://doi.org/10.1177/2150135116656001

27. Reps J.M., Rijnbeek P., Cuthbert A., Ryan P.B., Pratt N., Schuemie M. An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design. BMC Med. Inform. Decis. Mak. 2021; 21(1): 43. https://doi.org/10.1186/s12911-021-01408-x

28. Khlevner J., Naranjo K., Hoyer C., Carullo A.S., Kerr K.W., Marriage B. Healthcare burden associated with malnutrition diagnoses in hospitalized children with critical illnesses. Nutrients. 2023; 15(13): 3011. https://doi.org/10.3390/nu15133011

29. Niehaus I.M., Kansy N., Stock S., Dötsch J., Müller D. Applicability of predictive models for 30-day unplanned hospital readmission risk in paediatrics: a systematic review. BMJ Open. 2022; 12(3): e055956. https://doi.org/10.1136/bmjopen-2021-055956

30. Kang N., Cole T., Tsang V., Elliott M., de Leval M. Risk stratification in paediatric open-heart surgery. Eur. J. Cardiothorac. Surg. 2004; 26(1): 3–11. https://doi.org/10.1016/j.ejcts.2004.03.038

31. Golfenshtein N., Lisanti A.J., Medoff-Cooper B. Infant’s difficult temperament characteristics predict poor quality of life in parents of infants with complex CHDs post-cardiac surgery. Cardiol. Young. 2023; 33(8): 1316–21. https://doi.org/10.1017/S1047951122001895

32. Lisanti A.J., Min J., Golfenshtein N., Ravishankar C., Costello J.M., Huang L., et al. New insights on growth trajectory in infants with complex congenital heart disease. J. Pediatr. Nurs. 2022; 66: 23–9. https://doi.org/10.1016/j.pedn.2022.05.003

33. Delaplain P.T., Ehwerhemuepha L., Nguyen D.V., Di Nardo M., Jancelewicz T., Awan S., et al. The development of multiorgan dysfunction in CDH-ECMO neonates is associated with the level of pre-ECMO support. J. Pediatr. Surg. 2020; 55(5): 830–4. https://doi.org/10.1016/j.jpedsurg.2020.01.026

34. Elassal A.A., Al-Radi O.O., Debis R.S., Zaher Z.F., Abdelmohsen G.A., Faden M.S., et al. Neonatal congenital heart surgery: contemporary outcomes and risk profile. J. Cardiothorac. Surg. 2022; 17(1): 80. https://doi.org/10.1186/s13019-022-01830-w

35. Jyotsna K.R., Sharan S., Kishore S., Prakash J. The various scoring systems in pediatric intensive care units: a prospective observational study. Cureus. 2023; 15(5): e39679. https://doi.org/10.7759/cureus.39679

36. Acharya M., Berger R., Popov A.F. The role of the ADVanced Organ Support (ADVOS) system in critically ill patients with multiple organ failure. Artif. Organs. 2022; 46(5): 735–46. https://doi.org/10.1111/aor.14188

37. Habes Q.L.M., Kant N., Beunders R., van Groenendael R., Gerretsen J., Kox M., et al. Relationships between systemic inflammation, intestinal damage and postoperative organ dysfunction in adults undergoing low-risk cardiac surgery. Heart Lung. Circ. 2023; 32(3): 395–404. https://doi.org/10.1016/j.hlc.2022.12.006

38. Maisat W., Yuki K. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Ann. Card. Anaesth. 2023; 26(2): 133–42. https://doi.org/10.4103/aca.aca_147_22

39. Roeschl T., Hinrichs N., Hommel M., Pfahringer B., Balzer F., Falk V., et al. Systematic assessment of shock severity in postoperative cardiac surgery patients. J. Am. Coll. Cardiol. 2023; 82(17): 1691–706. https://doi.org/10.1016/j.jacc.2023.08.031

40. Volkov S.S., Zelenikin M.A., Vul’f K.A., Narmaniya I.T., Gushchin D.K. Use of the Aristotle basic complexity score to evaluate quality of surgical management in children with congenital heart defects. Serdechno-sosudistye zabolevaniya. 2016; 17(4): 31–42. https://elibrary.ru/wmdlqp (in Russian)

41. Benscoter A.L., Alten J.A., Atreya M.R., Cooper D.S., Byrnes J.W., Nelson D.P., et al. Biomarker-based risk model to predict persistent multiple organ dysfunctions after congenital heart surgery: a prospective observational cohort study. Crit. Care. 2023; 27(1): 193. https://doi.org/10.1186/s13054-023-04494-7

42. Rezende R.Q., Ricachinevsky C.P., Botta A., Angeli V.R., Nogueira A.J.D.S. Assessment of PIM-2 performance among surgical patients with heart disease and correlation of results with RACHS-1. Rev. Bras. Ter. Intensiva. 2017; 29(4): 453–9. https://doi.org/10.5935/0103-507X.20170069

43. Tweddell J.S., Ghanayem N.S., Hoffman G.M. Pro: NIRS is “Standard of Care” for Postoperative Management. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2010; 13(1): 44–50. https://doi.org/10.1053/j.pcsu.2010.02.008

44. Benavidez O.J., Connor J.A., Gauvreau K., Jenkins K.J. The contribution of complications to high resource utilization during congenital heart surgery admissions. Congenit. Heart Dis. 2007; 2(5): 319–26. https://doi.org/10.1111/j.1747-0803.2007.00119.x

45. Benavidez O.J., Gauvreau K., Bacha E., Nido P.D., Jenkins K.J. Application of a complication screening method to congenital heart surgery admissions: a preliminary report. Pediatr. Cardiol. 2008; 29(2): 258–65. https://doi.org/10.1007/s00246-007-9110-2


Review

For citations:


Sarsenbaeva G.I. Modern risk scales in pediatrics and pediatric cardiac surgery as tools for assessing the quality of medical care. Russian Pediatric Journal. 2023;26(6):443-449. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-6-443-449. EDN: vhlmoo

Views: 149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)