Bronchial asthma in children of Mongolia: prevalence and risk factors
https://doi.org/10.46563/1560-9561-2021-24-6-405-413
EDN: ztdlto
Abstract
Introduction. The peculiarity of this work is to determine the prevalence of bronchial asthma (BA) in children and the risk factors for its development in Mongolia. This country is intensively developing economically and is at the stage of transition to an industrial society, which allows assessing the impact of environmental and population changes on the frequency of BA formation.
The aim of the work is to determine the prevalence and risk factors for the development of BA in children of Mongolia.
Materials and methods. The prevalence of BA and data on patients aged from birth to 19 years living in Ulaanbaatar, 17 aimags and six districts of Mongolia were studied using a modified written questionnaire. To determine the prevalence of BA, we surveyed parents and 1,779 BA children patients. Information on biomedical and socio-hygienic risk factors for the development of BA in children of Mongolia was obtained after analyzing the data of a special questionnaire from 1,507 schoolchildren. All the received data are processed statistically.
Results. The prevalence of BA in children of Mongolia was found to account for 11 per 1,000 children. The highest incidence of BA in children was found mainly in the northern regions of Mongolia, with a sharply continental climate and high air pollution. Among the risk factors for the formation of BA in children, the most significant are burdened heredity, smoking, unfavourable living conditions, pregnancy pathology, Breastfeeding disorders in the newborn period, irrational nutrition of the child, acute respiratory infections. In 50% of BA patients, a significant increase in eosinophils was revealed. 61.2% of patients had an increased level of IgE. Regardless of the region of residence of BA children, polyvalent pollen sensitization was the most frequent — 59.3%, food allergy — 55.5%, epidermal allergy — 38.3% of cases, household (8.3%) and fungal sensitization (5%) were rarely detected. Treatment of 89 BA children in the National Center for Maternal and Child Health hospital under the Global Initiative for Asthma strategy helped improve patients’ condition.
Contribution:
Tsevegmid U., Solongo O. — research concept and design of the study;
Narmandakh J., Undrah A., Oyunchimeg A., Gerelmaa N. — collection and processing of material;
Oyunchimeg A., Nasantogtoh E. — statistical processing;
Tsevegmid U., Nasantogtoh E. — text writing;
Tsevegmid U. — editing.
All coauthors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: December 16, 2021
Accepted: December 17, 2021
Published: December 29, 2021
Keywords
About the Authors
Urtnasan TsevegmidMongolia
Cand. Sci. (Med.), Deputy Director of the Mongolian National Center for Maternal and Child Health, Ulaanbaatar, Mongolia
e-mail: urtnasan.tsevegmid@gmail.com
Orosoo Solongo
Mongolia
Javzandorj Narmandakh
Mongolia
Ankhbayar Undrah
Mongolia
Anchin Oyunchimeg
Mongolia
Nansal Gerelmaa
Mongolia
Erdenebileg Nasantogtoh
Mongolia
References
1. Marko A., Ross K.R. Severe asthma in childhood. Immunol. Allergy Clin. North Am. 2019; 39(2): 243–57. https://doi.org/10.1016/j.iac.2018.12.007
2. Haktanir Abul M., Phipatanakul W. Severe asthma in children: Evaluation and management. Allergol. Int. 2019; 68(2): 150–7. https://doi.org/10.1016/j.alit.2018.11.007
3. Hoch H.E., Houin P.R., Stillwell P.C. Asthma in children: a brief review for primary care providers. Pediatr. Ann. 2019; 48(3): e103–9. https://doi.org/10.3928/19382359-20190219-01
4. Bogdan R.D., Rusu L., Toma A.I., Nastase L. Significant clinical associations between exposure type factors and recurrent wheezing and asthma in children. J. Med. Life. 2020; 13(4): 600–11. https://doi.org/10.25122/jml-2020-0143
5. Crespo-Lessmann A., Mateus E., Torrejón M., Belda A., Giner J., Vidal S., et al. Asthma with bronchial hypersecretion: expression of mucins and toll-like receptors in sputum and blood. J. Asthma Allergy. 2017; 10: 269–76. https://doi.org/10.2147/JAA.S142200
6. Balabolkin I.I., Smirnov I.E. Allergic bronchial asthma in children: features of the development and modern therapy. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(1): 38–45. https://doi.org/10.18821/1560-9561-2018-21-1-38-45 (in Russian)
7. Centers for Disease Control and Prevention. Asthma Data; 2020. Available at: https://www.cdc.gov/asthma/most_recent_data.htm
8. Lin J., Fu X., Jiang P., Song W., Hu X., Jie Z., et al. Post hoc ana lysis of initial treatments and control status in the INITIAL study: an observational study of newly diagnosed patients with asthma. BMC Pulm Med. 2020; 20(1): 87. https://doi.org/10.1186/s12890-020-1069-2
9. Viinanen A., Munhbayarlah S., Zevgee T., Narantsetseg L., Naidansuren Ts., Koskenvuo M., et al. The protective effect of rural living against atopy in Mongolia. Allergy. 2007; 62(3): 272–80. https://doi.org/10.1111/j.1398-9995.2007.01279.x
10. Viinanen A., Munhbayarlah S., Zevgee T., Narantsetseg L., Naidansuren Ts., Koskenvuo M., et al. Prevalence of asthma, allergic rhinoconjunctivitis and allergic sensitization in Mongolia. Allergy. 2005; 60(11): 1370–7. https://doi.org/10.1111/j.1398-9995.2005.00877.x
11. Yoshihara S., Munkhbayarlakh S., Makino S., Ito C., Logii N., Dashdemberel S., et al.Prevalence of childhood asthma in Ulaanbaatar, Mongolia in 2009. Allergol. Int. 2016; 65(1): 62–7. https://doi.org/10.1016/j.alit.2015.07.009
12. Sonomjamts M., Dashdemberel S., Logii N., Nakae K., Chigusa Y., Ohhira S., et al. Prevalence of asthma and allergic rhinitis among adult population in Ulaanbaatar, Mongolia. Asia Pac. Allergy. 2014; 4(1): 25–31. https://doi.org/10.5415/apallergy.2014.4.1.25
13. Pawankar R., Wang J.Y., Wang I.J., Thien F., Chang Y.S., Latiff A.H.A., et al. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac. Allergy. 2020; 10(1): e11. https://doi.org/10.5415/apallergy.2020.10.e11
14. Nakao M., Yamauchi K., Ishihara Y., Omori H., Solongo B., Ichinnorov D. Prevalence and risk factors of airflow limitation in a Mongolian population in Ulaanbaatar: Cross-sectional studies. PLoS One. 2017; 12(4): e0175557. https://doi.org/10.1371/journal.pone.0175557
15. Nakao M., Yamauchi K., Ishihara Y., Solongo B., Ichinnorov D. Effects of air pollution and seasonality on the respiratory symptoms and health-related quality of life (HR-QoL) of outpatients with chronic respiratory disease in Ulaanbaatar: pilot study for the comparison of the cold and warm seasons. Springerplus. 2016; 5(1): 1817. https://doi.org/10.1186/s40064-016-3481-x
16. Ma T., Wang X., Zhuang Y., Shi H., Ning H., Lan T., et al. Prevalence and risk factors for allergic rhinitis in adults and children living in different grassland regions of Inner Mongolia. Allergy. 2020; 75(1): 234–9. https://doi.org/10.1111/all.13941
17. Wark P.A.B., Ramsahai J.M., Pathinayake P., Malik B., Bartlett N.W. Respiratory viruses and asthma. Semin. Respir. Crit. Care Med. 2018; 39(1): 45–55. https://doi.org/10.1055/s-0037-1617412
18. Chau-Etchepare F., Hoerger J.L., Kuhn B.T., Zeki A.A., Haczku A., Louie S., et al. Viruses and non-allergen environmental triggers in asthma. J. Investig. Med. 2019; 67(7): 1029–41. https://doi.org/10.1136/jim-2019-001000
19. Jartti T., Bønnelykke K., Elenius V., Feleszko W. Role of viruses in asthma. Semin. Immunopathol. 2020; 42(1): 61–74. https://doi.org/10.1007/s00281-020-00781-5
20. Lin J., Fu X., Jiang P., Song W., Hu X., Jie Z., et al. INITIAL – An observational study of disease severity in newly diagnosed asthma patients and initial response following 12 weeks’ treatment. Sci. Rep. 2019; 9(1): 1254. https://doi.org/10.1038/s41598-018-36611-w
21. Lkhagvadorj K., Zeng Z., Song J., Reinders-Luinge M., Kooistra W., Song S., et al. Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring: role for AREG-induced EGFR signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020; 319(4): L742–51. https://doi.org/10.1152/ajplung.00209.2020
22. Wang X.Y., Zhuang Y., Ma T.T., Zhang B., Wang X.Y. Prevalence of self-reported food allergy in six regions of Inner Mongolia, Northern China: A population-based survey. Med. Sci. Monit. 2018; 24: 1902–11. https://doi.org/10.12659/msm.908365
23. Ma T.T., Zhuang Y., Gong H.Y., Yii A.C., Wang X.Y., Shi H.Z. Predictive value of respiratory symptoms for the diagnosis of pollen-induced seasonal asthma among children and adults in Inner Mongolia. Ther. Clin. Risk Manag. 2017; 13: 967–74. https://doi.org/10.2147/TCRM.S138355
24. Nicolaou N., Siddique N., Custovic A. Allergic disease in urban and rural populations: increasing prevalence with increasing urbanization. Allergy. 2005; 60(11): 1357–60. https://doi.org/10.1111/j.1398-9995.2005.00961.x
25. Serebrisky D., Wiznia A. Pediatric asthma: a global epidemic. Ann. Glob. Health. 2019; 85(1): 6. https://doi.org/10.5334/aogh.2416
26. Ish P., Malhotra N., Gupta N. GINA 2020: what’s new and why? J. Asthma. 2021; 58(10): 1273–7. https://doi.org/10.1080/02770903.2020.1788076
27. Reddel H.K., Bacharier L.B., Bateman E.D., Brightling C.E., Brusselle G.G., Buhl R., et al. Global Initiative for Asthma (GINA) strategy 2021 – executive summary and rationale for key changes. Am. J. Respir. Crit. Care Med. 2021. https://doi.org/10.1164/rccm.202109-2205PP
28. Kothalawala D.M., Kadalayil L., Weiss V.B.N., Kyyaly M.A., Arshad S.H., Holloway J.W., et al. Prediction models for childhood asthma: A systematic review. Pediatr. Allergy Immunol. 2020; 31(6): 616–27. https://doi.org/10.1111/pai.13247
29. Maciag M.C., Phipatanakul W. Prevention of asthma: targets for intervention. Chest. 2020; 158(3): 913–22. https://doi.org/10.1016/j.chest.2020.04.011
30. Iio M., Miyaji Y., Yamamoto-Hanada K., Narita M., Nagata M., Ohya Y. Beneficial features of a mHealth asthma app for children and caregivers: qualitative study. JMIR Mhealth Uhealth. 2020; 8(8): e18506. https://doi.org/10.2196/18506
31. Surenjav E., Sovd T., Yoshida Y., Yamamoto E., Reyer J.A., Hamajima N. Trends in amenable mortality rate in the Mongolian population, 2007-2014. Nagoya J. Med. Sci. 2016; 78(1): 55–68.
32. Kenyon C.C., Maltenfort M.G., Hubbard R.A., Schinasi L.H., De Roos A.J., Henrickson S.E., et al. Variability in diagnosed asthma in young children in a large pediatric primary care network. Acad. Pediatr. 2020; 20(7): 958–66. https://doi.org/10.1016/j.acap.2020.02.003
33. Dinakar C. Monitoring of asthma control in children. Curr. Opin. Allergy Clin. Immunol. 2006; 6(2): 113–8. https://doi.org/10.1097/01.all.0000216854.95323.91
34. Behrooz L., Dilley M.A., Petty C.R., Huffaker M.F., Sheehan W.J., Phipatanakul W. The efficacy of a novel monitoring device on asthma control in children with asthma. Ann. Allergy Asthma Immunol. 2020; 125(3): 352–4. https://doi.org/10.1016/j.anai.2020.06.025
35. Smirnov I.E., Kucherenko A.G., Egorov M.S., Smirnova G.I., Tsevegmid U., Simonova O.I., et al. Matrix metalloproteinases in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(3): 145–51. https://doi.org/10.18821/1560-9561-2018-21-3-145-151 (in Russian)
36. Vasil’eva E.M., Smirnov I.E., Fisenko A.P., Bakanov M.I., Bogatyreva A.O., Smirnova G.I., et al. Proteolytic enzymes and cytokines in chronic bronchopulmonary diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(6): 350–6. https://doi.org/10.18821/1560-9561-2018-21-6-350-356 (in Russian)
37. Ma B., Athari S.S., Mehrabi Nasab E., Zhao L. PI3K/AKT/mTOR and TLR4/MyD88/NF-kappaB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation. 2021; 44(5): 1895–907. https://doi.org/10.1007/s10753-021-01466-3
38. Zhu S., Li P., Suo H., Dong J., Cui L. Association of ADAM33 gene polymorphisms with asthma in Mongolian and Han groups in Inner Mongolia. Saudi J. Biol. Sci. 2018; 25(8): 1795–9. https://doi.org/10.1016/j.sjbs.2018.08.018
39. Smirnov I.E., Egorov M.S. Chronic inflammation and its biomarkers in children with chronic nonspecific lung diseases and cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(6): 372–8. https://doi.org/10.18821/1560-9561-2018-21-6-372-378 (in Russian)
40. Munkhbayarlakh S., Kao H.F., Hou Y.I., Tuvshintur N., Bayar-Ulzii B., Narantsetseg L., et al. Vitamin D plasma concentration and vitamin D receptor genetic variants confer risk of asthma: A comparison study of Taiwanese and Mongolian populations. World Allergy Organ. J. 2019; 12(11): 100076. https://doi.org/10.1016/j.waojou.2019.100076
41. Smirnova G.I., Rumyantsev R.E. Vitamin D and allergic diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2017; 20(3): 166–72. https://doi.org/10.18821/1560-9561-2017-20(3)-166-172 (in Russian)
42. Douros K., Boutopoulou B., Fouzas S., Loukou I. Asthma and allergy “epidemic” and the role of vitamin D deficiency. Adv. Exp. Med. Biol. 2017; 996: 169–83. https://doi.org/10.1007/978-3-319-56017-5_14
43. Jolliffe D.A., Camargo C.A. Jr., Sluyter J.D., Aglipay M., Aloia J.F., Ganmaa D., et al. Vitamin D supplementation to prevent acute respiratory infections: systematic review and meta-analysis of aggregate data from randomized controlled trials. medRxiv. 2020; 2020.07.14.20152728. Preprint. https://doi.org/10.1101/2020.07.14.20152728
44. Sabitov A.U., Marakulina A.V. Features of different phenotypes of bronchial asthma in preschool children. Prakticheskaya meditsina. 2019; 17(5): 200–5. https://doi.org/10.32000/2072-1757-2019-5-200-205 (in Russian)
45. Akar-Ghibril N., Casale T., Custovic A., Phipatanakul W. Allergic endotypes and phenotypes of asthma. J. Allergy Clin. Immunol. Pract. 2020; 8(2): 429–40. https://doi.org/10.1016/j.jaip.2019.11.008
46. Smirnova G.I., Mankute G.R. Intestinal microbiota and atopic dermatitis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(6): 46–53. (in Russian)
47. Tian M., Chen M., Bao Y., Xu C., Qin Q., Zhang W., et al. Microbial contributions to bronchial asthma occurrence in children: A metagenomic study. J. Cell Biochem. 2019; 120(8): 13853–60. https://doi.org/10.1002/jcb.28658
48. Skevaki C., Karsonova A., Karaulov A., Xie M., Renz H. Asthma-associated risk for COVID-19 development. J. Allergy Clin. Immunol. 2020; 146(6): 1295–301. https://doi.org/10.1016/j.jaci.2020.09.017
49. Lodge C.J., Doherty A., Bui D.S., Cassim R., Lowe A.J., Agusti A., et al. Is asthma associated with COVID-19 infection? A UK Biobank analysis. ERJ Open Res. 2021; 7(4): 00309–2021. https://doi.org/10.1183/23120541.00309-2021
50. Carli G., Cecchi L., Stebbing J., Parronchi P., Farsi A. Asthma phenotypes, comorbidities, and disease activity in COVID-19: The need of risk stratification. Allergy. 2021; 76(3): 955–6. https://doi.org/10.1111/all.14537
51. Halpin D.M.G., Singh D., Hadfield R.M. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur. Respir. J. 2020; 55(5): 2001009. https://doi.org/10.1183/13993003.01009-2020
52. Hasan S.S., Capstick T., Zaidi S.T.R., Kow C.S., Merchant H.A. Use of corticosteroids in asthma and COPD patients with or without COVID-19. Respir. Med. 2020; 170: 106045. https://doi.org/10.1016/j.rmed.2020.106045
53. Abrams E.M., Sinha I., Fernandes R.M., Hawcutt D.B. Pediatric asthma and COVID-19: The known, the unknown, and the controversial. Pediatr. Pulmonol. 2020; 55(12): 3573–8. https://doi.org/10.1002/ppul.25117
Review
For citations:
Tsevegmid U., Solongo O., Narmandakh J., Undrah A., Oyunchimeg A., Gerelmaa N., Nasantogtoh E. Bronchial asthma in children of Mongolia: prevalence and risk factors. Russian Pediatric Journal. 2021;24(6):405-413. (In Russ.) https://doi.org/10.46563/1560-9561-2021-24-6-405-413. EDN: ztdlto