Preview

Russian Pediatric Journal

Advanced search

Efficacy of using of the apparatus «Exobot» on the gait of a child with cerebral palsy

https://doi.org/10.46563/1560-9561-2021-24-6-433-436

EDN: detnbs

Abstract

Cerebral palsy is characterized by non-progressive brain damage but a progressive cascade of secondary diseases of the musculoskeletal system. The characteristic changes in the infantile cerebral palsy lead to dysfunction of the ankle, knee and hip joints, which affects the biomechanics of walking and leads to the pathological transformation.

Purpose: to determine the effect of the Exobot simulator on the walking biomechanics of children with cerebral palsy. The review compares the normal and pathological biomechanics of walking in children with cerebral palsy, starting from the Amsterdam classification of pathological gait, which includes five types depending on the position of the knee joint and foot concerning the horizontal surface mid-support phase. Despite the child’s level with cerebral palsy according to the classification of global motor functions and the type of gait according to the Amsterdam classification, all children in the contact phase begin contact not from the heel but the forefoot. This entails a deterioration in the control of the trunk balance and an increase in the energy consumption for verticalization. The gait of a child with cerebral palsy in the  Exobot simulator, due to the fixation of the foot, ankle joint and the system of carabiners and elastic rods, always begins from the heel.

Thus, the correct step pattern and muscle memory are formed in a child with cerebral palsy. There is an improvement in the control over the balance on the part of the child, his motivation for motor development increases.

Contribution:
Tabe E.E.  — collection and processing of material, writing text;
Sharkov S.M. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: November 23, 2021
Accepted: December 17, 2021
Published: December 29, 2021

 

About the Authors

Evgeniya E. Tabe
National Medical Research Center for Children’s Health
Russian Federation

Candidate of Medical Sciences, Head of the Department of Outpatient Neuro-orthopedics, National Medical Research Center for Children’s Health

e-mail: dr.tabe@mail.ru



Sergei M. Sharkov
National Medical Research Center for Children’s Health; Morozovskaya Children Municipal Clinical Hospital; I.M. Sechenov First Moscow State Medical University
Russian Federation


References

1. Graham H.K., Rosenbaum P., Paneth N., Dan B., Lin J.P., Damiano D.L., et al. Cerebral palsy. Nat. Rev. Dis. Primers. 2016; 2: 15082. https://doi.org/10.1038/nrdp.2015.82

2. Green L.B., Hurvitz E.A. Cerebral palsy. Phys. Med. Rehabil. Clin. N. Am. 2007; 18(4): 859-82, vii. https://doi.org/10.1016/j.pmr.2007.07.005

3. Jaspers E., Verhaegen A., Geens F., Van Campenhout A., Desloovere K., Molenaers G. Lower limb functioning and its impact on quality of life in ambulatory children with cerebral palsy. Eur. J. Paediatr. Neurol. 2013; 17(6): 561-7. https://doi.org/10.1016/j.ejpn.2013.04.006

4. Sarathy K., Doshi C., Aroojis A. Clinical examination of children with cerebral palsy. Indian J. Orthop. 2019; 53(1): 35-44. https://doi.org/10.4103/ortho.IJOrtho_409_17

5. Cappellini G., Sylos-Labini F., Dewolf A.H., Solopova I.A., Morelli D., Lacquaniti F., et al. Maturation of the locomotor circuitry in children with cerebral palsy. Front. Bioeng. Biotechnol. 2020; 8: 998. https://doi.org/10.3389/fbioe.2020.00998

6. Johari R., Maheshwari S., Thomason P., Khot A. Musculoskeletal evaluation of children with cerebral palsy. Indian J. Pediatr. 2016; 83(11): 1280-8. https://doi.org/10.1007/s12098-015-1999-5

7. Franki I., De Cat J., Deschepper E., Molenaers G., Desloovere K., Himpens E., et al. A clinical decision framework for the identification of main problems and treatment goals for ambulant children with bilateral spastic cerebral palsy. Res. Dev. Disabil. 2014; 35(5): 1160-76. https://doi.org/10.1016/j.ridd.2014.01.025

8. Domagalska M., Szopa A., Syczewska M., Pietraszek S., Kidoń Z., Onik G. The relationship between clinical measurements and gait analysis data in children with cerebral palsy. Gait Posture. 2013; 38(4): 1038-43. https://doi.org/10.1016/j.gaitpost.2013.05.031

9. Fosdahl M.A., Jahnsen R., Pripp A.H., Holm I. Change in popliteal angle and hamstrings spasticity during childhood in ambulant children with spastic bilateral cerebral palsy. A register-based cohort study. BMC Pediatr. 2020; 20(1): 11. https://doi.org/10.1186/s12887-019-1891-y

10. Rethlefsen S.A., Blumstein G., Kay R.M., Dorey F., Wren T.A. Prevalence of specific gait abnormalities in children with cerebral palsy revisited: influence of age, prior surgery, and Gross Motor Function Classification System level. Dev. Med. Child Neurol. 2017; 59(1): 79-88. https://doi.org/10.1111/dmcn.13205

11. Bekius A., Bach M.M., van der Krogt M.M., de Vries R., Buizer A.I., Dominici N. Muscle synergies during walking in children with cerebral palsy: a systematic review. Front. Physiol. 2020; 11: 632. https://doi.org/10.3389/fphys.2020.00632

12. Yildiz C., Demirkale I. Hip problems in cerebral palsy: screening, diagnosis and treatment. Curr. Opin. Pediatr. 2014; 26(1): 85-92. https://doi.org/10.1097/MOP.0000000000000040

13. Eek M.N., Zügner R., Stefansdottir I., Tranberg R. Kinematic gait pattern in children with cerebral palsy and leg length discrepancy: Effects of an extra sole. Gait Posture. 2017; 55: 150-6. https://doi.org/10.1016/j.gaitpost.2017.04.022

14. Ferrari A., Bergamini L., Guerzoni G., Calderara S., Bicocchi N., Vitetta G., et al. Gait-based diplegia classification using LSMT networks. J. Healthc. Eng. 2019; 2019: 3796898. https://doi.org/10.1155/2019/3796898

15. Folle M.R., Tedesco A.P., Nicolini-Panisson R.D. Correlation between visual gait analysis and functional aspects in cerebral palsy. Acta Ortop. Bras. 2016; 24(5): 259-61. https://doi.org/10.1590/1413-785220162405162986

16. Saether R., Helbostad J.L., Adde L., Brændvik S., Lydersen S., Vik T. Gait characteristics in children and adolescents with cerebral palsy assessed with a trunk-worn accelerometer. Res. Dev. Disabil. 2014; 35(7): 1773-81. https://doi.org/10.1016/j.ridd.2014.02.011

17. Lewerenz A., Wolf S.I., Dreher T., Krautwurst B.K. Performance of stair negotiation in patients with cerebral palsy and stiff knee gait. Gait Posture. 2019; 71: 14-9. https://doi.org/10.1016/j.gaitpost.2019.04.005

18. Gómez-Pérez C., Font-Llagunes J.M., Martori J.C., Vidal Samsó J. Gait parameters in children with bilateral spastic cerebral palsy: a systematic review of randomized controlled trials. Dev. Med. Child Neurol. 2019; 61(7): 770-82. https://doi.org/10.1111/dmcn.14108

19. Roche N., Pradon D., Cosson J., Robertson J., Marchiori C., Zory R. Categorization of gait patterns in adults with cerebral palsy: a clustering approach. Gait Posture. 2014; 39(1): 235-40. https://doi.org/10.1016/j.gaitpost.2013.07.110

20. Ferrari A., Brunner R., Faccioli S., Reverberi S., Benedetti M.G. Gait analysis contribution to problems identification and surgical planning in CP patients: an agreement study. Eur. J. Phys. Rehabil. Med. 2015; 51(1): 39-48.

21. Boyer E.R., Patterson A. Gait pathology subtypes are not associated with self-reported fall frequency in children with cerebral palsy. Gait Posture. 2018; 63: 189-94. https://doi.org/10.1016/j.gaitpost.2018.05.004

22. Malone A., Kiernan D., French H., Saunders V., O’Brien T. Obstacle crossing during gait in children with cerebral palsy: cross-sectional study with kinematic analysis of dynamic balance and trunk control. Phys. Ther. 2016; 96(8): 1208-15. https://doi.org/10.2522/ptj.20150360

23. Rethlefsen S.A., Kay R.M. Transverse plane gait problems in children with cerebral palsy. J. Pediatr. Orthop. 2013; 33(4): 422-30. https://doi.org/10.1097/BPO.0b013e3182784e16

24. Ammann-Reiffer C., Bastiaenen C.H.G., Meyer-Heim A.D., van Hedel H.J.A. Lessons learned from conducting a pragmatic, randomized, crossover trial on robot-assisted gait training in children with cerebral palsy (PeLoGAIT). J. Pediatr. Rehabil. Med. 2020; 13(2): 137-48. https://doi.org/10.3233/PRM-190614

25. Lofterød B., Terjesen T. Results of treatment when orthopaedic surgeons follow gait-analysis recommendations in children with CP. Dev. Med. Child Neurol. 2008; 50(7): 503-9. https://doi.org/10.1111/j.1469-8749.2008.03018.x

26. Papageorgiou E., Simon-Martinez C., Molenaers G., Ortibus E., Van Campenhout A., Desloovere K. Are spasticity, weakness, selectivity, and passive range of motion related to gait deviations in children with spastic cerebral palsy? A statistical parametric mapping study. PLoS One. 2019; 14(10): e0223363. https://doi.org/10.1371/journal.pone.0223363

27. Schasfoort F., Pangalila R., Sneekes E.M., Catsman C., Becher J., Horemans H., et al.Intramuscular botulinum toxin prior to comprehensive rehabilitation has no added value for improving motor impairments, gait kinematics and goal attainment in walking children with spastic cerebral palsy. J. Rehabil. Med. 2018; 50(8): 732-42. https://doi.org/10.2340/16501977-2369

28. Franki I., Desloovere K., De Cat J., Feys H., Molenaers G., Calders P., et al. The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J. Rehabil. Med. 2012; 44(5): 385-95. https://doi.org/10.2340/16501977-0983

29. Fosdahl M.A., Jahnsen R., Kvalheim K., Holm I. Effect of a combined stretching and strength training program on gait function in children with cerebral palsy, GMFCS level I & II: a randomized controlled trial. Medicina (Kaunas). 2019; 55(6): 250. https://doi.org/10.3390/medicina55060250

30. Willerslev-Olsen M., Petersen T.H., Farmer S.F., Nielsen J.B. Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain. 2015; 138(Pt. 3): 589-603. https://doi.org/10.1093/brain/awu399

31. Lorentzen J., Frisk R., Willerslev-Olsen M., Bouyer L., Farmer S.F., Nielsen J.B. Gait training facilitates push-off and improves gait symmetry in children with cerebral palsy. Hum. Mov. Sci. 2020; 69: 102565. https://doi.org/10.1016/j.humov.2019.102565

32. Joseph B., Reddy K., Varghese R.A., Shah H., Doddabasappa S.N. Management of severe crouch gait in children and adolescents with cerebral palsy. J. Pediatr. Orthop. 2010; 30(8): 832-9. https://doi.org/10.1097/BPO.0b013e3181fbfd0e

33. Cauraugh J.H., Naik S.K., Hsu W.H., Coombes S.A., Holt K.G. Children with cerebral palsy: a systematic review and meta-analysis on gait and electrical stimulation. Clin. Rehabil. 2010; 24(11): 963-78. https://doi.org/10.1177/0269215510371431


Review

For citations:


Tabe E.E., Sharkov S.M. Efficacy of using of the apparatus «Exobot» on the gait of a child with cerebral palsy. Russian Pediatric Journal. 2021;24(6):433-436. (In Russ.) https://doi.org/10.46563/1560-9561-2021-24-6-433-436. EDN: detnbs

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)