Effect of nutrition on the nutritional status in preterm infants with extremely low birth weight
https://doi.org/10.46563/1560-9561-2024-27-2-80-89
Abstract
Objective: to determine the peculiarities of nutritional status of ELBW infants depending on the specifics of nutrition over the first year of life.
Materials and methods. One hundred fourteen ELBW infants aged from birth to 11 months postnatal age (PNA) were examined. Patients were categorized into 2 groups: group 1 (main group) consisted of infants (n = 59) whose diets were adjusted by us depending on the degree of nutritional deficiency. The group 2 (control) consisted of infants (n = 55) who did not receive our recommendations or did not follow them. Anthropometric parameters were assessed using the INTERGROWTH-21st international growth standards until the babies reached 64 weeks of postconceptional age (PCA), and then using the WHO Anthro (2009) software. Body composition (fat and fat-free mass) was determined by air plethysmography (PEA POD, LMi, USA).
Results. Analysis of the nutritional status in ELBW infants revealed decrease in anthropometric indices by the time of discharge from the hospital; both groups had nutritional deficiencies of varying severity: the medians of body weight (BW) to PCA were –1.92 [–2.72– –1.18] and –2.18 [–3.57– –1.37]). Nutritional correction: the use of breast milk fortifiers, high-protein, high-calorie mixtures for prematurity and inclusion of certain complementary foods starting from 4 months of age allowed to significantly increasing the nutritional value of the diets of babies from the group 1 and improve their nutritional status, having corrected nutritional deficiencies by 6 months of age. The fat-free body weight (g) content increased significantly, while the amount of body fat (%) did not exceed the values characteristic of preterm infants. In the 2nd gr. by 6 months, malnutrition persisted: BW to PCA was –2.06 [–2.52– –1.66], which persisted until the end of the study (11 months).
Conclusion. Dynamic assessment of the nutritional status in ELBW infants and timely optimization of nutrition allowed correcting nutritional deficiency during a relatively short time, which can have a significant positive impact on their further growth, development, and health status.
About the Authors
Evgeniya L. Pinaeva-SlyshRussian Federation
Vera A. Skvortsova
Russian Federation
Tatyana E. Borovik
Russian Federation
Milana A. Basargina
Russian Federation
Elena P. Zimina
Russian Federation
Anastasiya S. Petrova
Russian Federation
Lyudmila V. Malyutina
Russian Federation
Olga L. Lukoyanova
Russian Federation
Maria S. Illarionova
Russian Federation
References
1. Скворцова В.А., Белоусова Т.В., Андрюшина И.В., Украинцев С.Е., Зенкова К.И. Обеспечение преемственности в оказании медицинской помощи недоношенным детям после выписки из стационара. Неонатология: новости, мнения, обучение. 2022; 10(3): 44–54. https://doi.org/10.33029/2308-2402-2022-10-3-44-54
2. Embleton N.D., Moltu J.S., Lapillonne A., Van Den Akker C.H.P., Carnielli V., Fusch C., et al. Enteral Nutrition in Preterm Infants (2022): A position paper from the ESPGHAN Committee on nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2023; 76(2): 248–68. https://doi.org/10.1097/MPG.0000000000003642
3. Rigo J., Boboli H., Franckart G., Pieltain C., De Curtis M. Surveillance of the very-low birthweight infant: growth and nutrition. Arch. Pediatr. 1998; 5(4): 449–53. https://doi.org10.1016/s0929-693x(98)80036-5
4. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации. Методические рекомендации ФГАУ «НМИЦ здоровья детей» Минздрава России. М.; 2019.
5. Rigo J., De Curtis M., Pieltain C. Nutritional assessment in preterm infants with special reference to body composition. Semin. Neonatol. 2001; 6(5): 383–91. https://doi.org/10.1053/siny.2001.0073
6. Ruys C.A., Van De Lagemaat M., Rotteveel J., Finken M.J.J., Lafeber H.N. Improving long-term health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Euro. J. Pediatr. 2021; 180(6): 1665–73. https://doi.org/10.1007/s00431-021-03950-2
7. Софронова Л.Н., Федорова Л.А. Недоношенный ребёнок. Справочник. М.: Status Praesens; 2020.
8. Baldassarre M.E., Panza R., Cresi F., Salvatori G., Corvaglia L., Aceti A., et al. Complementary feeding in preterm infants: a position paper by Italian neonatal, paediatric and paediatric gastroenterology joint societies. Ital. J. Pediatr. 2022; 48(1): 143. https://doi.org/10.1186/s13052-022-01275-w
9. Sleigh G., Ounsted M. Present-day practice in infant feeding. Lancet. 1975; 1(7909): 753. https://doi.org/10.1016/S0140-6736(75)91670-0
10. Weaning and the weaning diet. Report of the working group on the weaning diet of the committee on medical aspects of food policy. Rep. Health Soc. Subj. (Lond.). 1994; 45: 1–113.
11. King C. An evidence based guide to weaning preterm infants. Paediatr. Child Health. 2009; 19(9): 405–14. https://doi.org/10.1016/j.paed.2009.06.005
12. Palmer D.J., Makrides M. Introducing solid foods to preterm infants in developed countries. Ann. Nutr. Metab. 2012; 60(Suppl. 2): 31–8. https://doi.org/10.1159/000335336
13. Zielinska M.A., Rust P., Masztalerz-Kozubek D., Bichler J., Hamułka J. Factors influencing the age of complementary feeding – a cross-sectional study from two European countries. Int. J. Environ. Res. Public Health. 2019; 16(20): 1–18. https://doi.org/10.3390/ijerph16203799
14. Norris F.J., Larkin M., Williams C., Hampton S., Morgan J. Factors affecting the introduction of complementary foods in the preterm infant. Eur. J. Clin. Nutr. 2002; 56(5): 448–54. https://doi.org/10.1038/sj.ejcn.1601336
15. Yrjänä J.M.S., Koski T., Törölä H., Valkama M., Kulmala P. Very early introduction of semisolid foods in preterm infants does not increase food allergies or atopic dermatitis. Ann. Allergy. Asthma. Immunol. 2018; 121(3): 353–9. https://doi.org/10.1016/j.anai.2018.06.029
16. Simon L., Frondas-Chauty A., Senterre T., Flamant C., Darmaun D., Rozé J.C. Determinants of body composition in preterm infants at the time of hospital discharge. Am. J. Clin. Nutr. 2014; 100(1): 98–104. https://doi.org/10.3945/ajcn.113.080945
17. Johnson M.J., Wootton S.A., Leaf A.A., Jackson A.A. Preterm birth and body composition at term equivalent age: A systematic review and meta-analysis. Pediatrics. 2012; 130(3): e640–9. https://doi.org/10.1542/peds.2011-3379
18. Ramel S.E., Gray H.L., Ode K.L., Younge N., Georgieff M.K., Demerath E.W. Body composition changes in preterm infants following hospital discharge: Comparison with term infants. J. Pediatr. Gastroenterol. Nutr. 2011; 53(3): 333–8. https://doi.org/10.1097/MPG.0b013e3182243aa7
19. Hamatschek C., Yousuf E.I., Möllers L.S., So H.Y., Morrison K.M., Fusch C., et al. Fat and fat-free mass of preterm and term infants from birth to six months: A review of current evidence. Nutrients. 2020; 12(2): 288. https://doi.org/10.3390/nu12020288
20. Embleton N.D., Wood C.L., Tinnion R.J. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2019; 14(1): 47–50. https://doi.org/10.1007/978-94-007-6812-3_14
21. Wells J.C.K., Chomtho S., Fewtrell M.S. Programming of body composition by early growth and nutrition. Proc. Nutr. Soc. 2007; 66(3): 423–34. https://doi.org/10.1017/S0029665107005691
22. Starc M., Giangreco M., Centomo G., Travan L., Bua J. Extrauterine growth restriction in very low birth weight infants according to different growth charts: A retrospective 10 years observational study. PLoS One. 2023; 18(4): e0283367. https://doi.org/10.1371/journal.pone.0283367
23. Yazici A., Buyuktiryaki M., Sari F.N., Akin M.S., Ertekin O., Dizdar A.E. Comparison of different growth curves in the assessment of extrauterine growth restriction in very low birth weight preterm infants. Arch. Pediatr. 2023; 30(1): 31–5. https://doi.org/10.1016/j.arcped.2022.11.008
24. Hu F., Tang Q., Wang Y., Wu J., Ruan H., Lu L., et al. Analysis of nutrition support in very low-birth-weight infants with extrauterine growth restriction. Nutr. Clin. Pract. 2019; 34(3): 436–43. https://doi.org/10.1002/ncp.10210
25. Salas A.A., Jerome M., Finck A., Razzaghy J., Chandler-Laney P., Carlo W.A. Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial. Pediatr. Res. 2022; 91(5): 1231–7. https://doi.org/10.1038/s41390-021-01628-x
26. Белоусова Т.В., Скворцова В.А., Андрюшина И.В., Затолокина А.О., Белоусова К.А., Ивлева Т.Ю. Диспансерное наблюдение на педиатрическом участке за детьми, родившимися недоношенными. Методическое пособие для врачей педиатров. М.; 2021.
27. Davis S.M., Kaar J.L., Ringham B.M., Hockett C.W., Glueck D.H., Dabelea D. Sex differences in infant body composition emerge in the first 5 months of life. J. Pediatr. Endocrinol. Metab. 2019; 1–5. https://doi.org/10.1515/jpem-2019-0243
28. Simon L., Borrego P., Darmaun D., Legrand A., Roze J., Chauty-frondas A., et al. Effect of sex and gestational age on neonatal body composition. Br. J. Nutr. 2013; 109(6): 1105–8. https://doi.org/10.1017/s0007114512002991
29. Chmielewska A., Farooqi A., Domellöf M., Ohlund I. Lean tissue deficit in preterm infants persists up to 4 months of age: Results from a Swedish longitudinal study. Neonatology. 2020; 117(1): 80–7. https://doi.org/10.1159/000503292
Review
For citations:
Pinaeva-Slysh E.L., Skvortsova V.A., Borovik T.E., Basargina M.A., Zimina E.P., Petrova A.S., Malyutina L.V., Lukoyanova O.L., Illarionova M.S. Effect of nutrition on the nutritional status in preterm infants with extremely low birth weight. Russian Pediatric Journal. 2024;27(2):80-89. (In Russ.) https://doi.org/10.46563/1560-9561-2024-27-2-80-89