Diffusion tensor imaging of spinal cord in healthy children
https://doi.org/10.46563/1560-9561-2024-27-5-350-355
EDN: mszoub
Abstract
Introduction. Diffusion tensor imaging (DTI) is a technique that allows evaluating diffusion of water molecules along the myelin sheath of nerve fibers and obtaining information about the integrity of brain and spinal cord pathways. Obtaining reproducible values of diffusion parameters is an urgent and feasible task. The aim of this study was to establish the values of DTI parameters along the entire length of the spinal cord in healthy children for further use in the assessment of acute injury, its consequences and other spinal cord diseases.
Materials and methods. The study included fifteen healthy patients of 13 to 18 years, including 6 girls and 8 boys, average age was 15.2 ± 1.2 years. The study was performed on a Philips Achieva dStream 3T MRI scanner (Netherlands). As part of this study, a spine MRI protocol was developed to cover the entire volume of spinal cord with separate visualization of cervical and thoracic spine (duration: 9 min 48 sec). The IRIS ZOOM sequence (Philips) was used to obtain DTI images. Spinal Cord Toolbox software package was used to process the data. Statistical analysis was performed using GraphPad Prism software, and significance was determined at p < 0.05.
Results. Mapping and calculation of the following diffusion parameters: fractional anisotropy (FA), medial (MD), longitudinal or axial (AD) and transverse (RD) diffusion showed the average values of the parameters FA, AD, MD, RD of the spinal cord of children to be: FA, AD, MD, RD of spinal cord were: FA = 0.63 ± 0.06, AD = 2.1 ± 0.3 × 10−3 mm2/s, MD = 1.15 ± 0.16 × 10−3 mm2/s, RD = 0.68 ± 0.12 × 10−3 mm2/s. An increase in FA was detected at the Th2–Th9 level compared to the values at the C6–Th1 and Th10–Th12 levels. The AD coefficient at the Th2–Th9 level is increased relative to the C2–C5 and C6–Th1 levels. MD values in spinal cord areas at the Th2–Th9 and Th10–Th12 levels are statistically higher relative to higher levels of the spinal cord. RD values in the zone at the Th10–Th12 level are increased relative to all other areas.
Conclusion. The study established the diffusion indices of FA, MD, AD, RD of spinal cord in children aged 12 to 18 years and showed small differences between the spinal cord regions. The data obtained can be used as reference values for assessing spinal cord condition in various pathological processes (trauma, demyelinating and tumor diseases) in children for the corresponding age group.
Contribution:
Akhadov T.A., Bozhko O.V., Ublinskiy M.V. — research concept and design;
Bozhko O.V., Ublinskiy M.V., Kobzeva A.A., Melnikov I.A. — conducting research;
Bozhko O.V., Ublinskiy M.V., Voronkova E.V. — collection and analysis of data;
Ublinskiy M.V., Voronkova E.V. — statistical analysis;
Bozhko O.V. — writing the text;
Akhadov T.A., Ublinskiy M.V. — editing the text;
Akhadov T.A., Bozhko O.V., Ublinzkiy M.V. — approval of the final version of the article.
All co-authors — responsibility for the integrity of all parts of the article.
Acknowledgment. The study was supported by grant from the Moscow Department of Health No. 2112-9/22.
Conflict of interest. The authors declare no conflict of interest.
Received: September 27, 2024
Accepted: October 08, 2024
Published: November 12, 2024
About the Authors
Olga V. BozhkoRussian Federation
Maksim V. Ublinskiy
Russian Federation
PhD, radiologist, scientific researcher, Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, 119180, Russian Federation
e-mail: maxublinsk@mail.ru
Tolibjon A. Akhadov
Russian Federation
Elena V. Voronkova
Russian Federation
Anna A. Kobzeva
Russian Federation
Iliya A. Melnikov
Russian Federation
References
1. Bozzo A., Marcoux J., Radhakrishna M., Pelletier J., Goulet B. The role of magnetic resonance imaging in the management of acute spinal cord injury. J. Neurotrauma. 2011; 28(8): 1401–11. https://doi.org/10.1089/neu.2009.1236
2. Barry R.L., Vannesjo S.J., By S., Gore J.C., Smith S.A. Spinal cord MRI at 7T. Neuroimage. 2018; 168: 437–51. https://doi.org/10.1016/j.neuroimage.2017.07.003
3. Ruiz Santiago F., Láinez Ramos-Bossini A.J., Wáng Y.X.J., Martínez Barbero J.P., García Espinosa J., Martínez Martínez A. The value of magnetic resonance imaging and computed tomography in the study of spinal disorders. Quant. Imaging Med. Surg. 2022; 12(7): 3947–86. https://doi.org/10.21037/qims-2022-04
4. Dmitrenko D.M., Akhadov T.A., Meshcheryakov S.V., Melnikov I.A., Bozhko O.V., Semenova Zh.B., et al. Diffusion tensor imaging for cervical spine trauma in children. Detskaya khirurgiya. 2022; 26(2): 74–81. https://doi.org/10.55308/1560-9510-2022-26-2-74-81 https://elibrary.ru/wqzcxk (in Russian)
5. Sąsiadek M.J., Szewczyk P., Bladowska J. Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med. Sci. Monit. 2012; 18(6): RA73-9. https://doi.org/10.12659/msm.882891
6. Trolle C., Goldberg E., Linnman C. Spinal cord atrophy after spinal cord injury - A systematic review and meta-analysis. Neuroimage Clin. 2023; 38: 103372. https://doi.org/10.1016/j.nicl.2023.103372
7. Bozhko O.V., Akhadov T.A. Diffusion-weighted and diffusion tensor imaging in children with spinal cord injury: a review. Luchevaya diagnostika i terapiya. 2023; 14(1): 9–16. https://doi.org/10.22328/2079- 5343-2023-14-1-9-16 (in Russian)
8. Levashkina I.M., Serebryakova S.V., Efimtsev A.Yu. Diffusion tensor MRI is a modern method for assessing microstructural changes in the brain (literature review). Vestnik Sankt-Peterburgskogo universiteta. Meditsina. 2016; (4): 39–54. https://doi.org/10.21638/11701/spbu11.2016.404 https://elibrary.ru/ygsgjv (in Russian)
9. Martin A.R., Aleksanderek I., Cohen-Adad J., Tarmohamed Z., Tetreault L., Smith N., et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 2015; 10: 192–238. https://doi.org/10.1016/j.nicl.2015.11.019
10. Figley C.R., Stroman P.W. Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn. Reson. Med. 2007; 58(1): 185–9. https://doi.org/10.1002/mrm.21260
11. Kharbanda H.S., Alsop D.C., Anderson A.W., Filardo G., Hackney D.B. Effects of cord motion on diffusion imaging of the spinal cord. Magn. Reson. Med. 2006; 56(2): 334–9. https://doi.org/10.1002/mrm.20959
12. Summers P., Staempfli P., Jaermann T., Kwiecinski S., Kollias S. A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. AJNR Am. J. Neuroradiol. 2006; 27(9): 1952–61.
13. Wilm B.J., Gamper U., Henning A., Pruessmann K.P., Kollias S.S., Boesiger P. Diffusion-weighted imaging of the entire spinal cord. NMR Biomed. 2009; 22(2): 174–81. https://doi.org/10.1002/nbm.1298
14. De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D., et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017; 145(Pt. A): 24–43. https://doi.org/10.1016/j.neuroimage.2016.10.009
15. Winston G.P. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant. Imaging. Med. Surg. 2012; 2(4): 254–65. https://doi.org/10.3978/j.issn.2223-4292.2012.12.05
16. Saksena S., Middleton D.M., Krisa L., Shah P., Faro S.H., Sinko R., et al. Diffusion tensor imaging of the normal cervical and thoracic pediatric spinal cord. AJNR Am. J. Neuroradiol. 2016; 37(11): 2150–7. https://doi.org/10.3174/ajnr.A4883
17. Barakat N., Mohamed F.B., Hunter L.N., Shah P., Faro S.H., Samdani A.F., et al. Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence. AJNR Am. J. Neuroradiol. 2012; 33(6): 1127–33. https://doi.org/10.3174/ajnr.A2924
18. Alizadeh M., Fisher J., Saksena S., Sultan Y., Conklin C.J., Middleton D.M., et al. Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord. Neuroimage Clin. 2018; 18: 784–92. https://doi.org/10.1016/j.nicl.2018.03.014
19. Campbell W.W., DeJong R.N. The spinal cord level. In: DeJong’s the Neurologic Examination. 6th ed. Philadelphia: Lippincott Williams Wilkins; 2005: 314–24.
20. Goto N., Otsuka N. Development and anatomy of the spinal cord. Neuropathology. 1997; 17(1): 25–31. https://doi.org/10.1111/j.1440-1789.1997.tb00007.x
21. Mossa-Basha M., Peterson D.J., Hippe D.S., Vranic J.E., Hofstetter C., Reyes M., et al. Segmented quantitative diffusion tensor imaging evaluation of acute traumatic cervical spinal cord injury. Br. J. Radiol. 2021; 94(1118): 20201000. https://doi.org/10.1259/bjr.20201000
22. Shahrampour S., De Leener B., Alizadeh M., Middleton D., Krisa L., Flanders A.E., et al. Atlas-based quantification of DTI measures in a typically developing pediatric spinal cord. AJNR Am. J. Neuroradiol. 2021; 42(9): 1727–34. https://doi.org/10.3174/ajnr.A7221
23. Bosma R.L., Stroman P.W. Characterization of DTI indices in the cervical, thoracic, and lumbar spinal cord in healthy humans. Radiol. Res. Pract. 2012; 2012: 143705. https://doi.org/10.1155/2012/143705
Review
For citations:
Bozhko O.V., Ublinskiy M.V., Akhadov T.A., Voronkova E.V., Kobzeva A.A., Melnikov I.A. Diffusion tensor imaging of spinal cord in healthy children. Russian Pediatric Journal. 2024;27(5):350-355. (In Russ.) https://doi.org/10.46563/1560-9561-2024-27-5-350-355. EDN: mszoub