Preview

Russian Pediatric Journal

Advanced search

Vitamin D deficiency in children and pathology of the digestive system

https://doi.org/10.46563/1560-9561-2023-26-3-212-217

EDN: mdzwli

Abstract

The review shows the relationship of vitamin D deficiency (VDD) with various forms of pathology of the gastrointestinal tract. The VDD prevalence in Russia has regional and age characteristics and reaches 42%. In addition to the key role as a regulator of calcium metabolism, which ensures the growth and formation of the structure of bone tissue, vitamin D was established to affect the course of various forms of pathology of the gastrointestinal tract.  At the same time, it acts as a regulator of innate immunity.  In other cases, the effects of vitamin D are aimed at activating anti-inflammatory factors, which determine its positive effect on the course of diseases through antioxidant action.  Data on the VDD impact on the formation of various forms of intestinal pathology with an inflammatory and immune mechanism of development are presented. The authors point to the VDD impact in inflammatory bowel diseases.  Regardless of the VDD primacy of inflammatory bowel disease, the correction of the VDD has a pronounced positive effect on the course of the disease.

Contribution:
Polivanova T.V. — concept and design of the study;
Vshivkov V.A. — collection and processing of material;
Vshivkov V.A., Anikina K.A. — statistical processing;
Polivanova T.V., Anikina K.A. — writing the text;
Polivanova T.V. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all part of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: April 21, 2023
Accepted: May 16, 2023
Published: June 27, 2023

About the Authors

Tamara V. Polivanova
Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences — Scientific Research Institute for Medical Problems of the North
Russian Federation

Dr. Sci. (Med.), Chief scientist, Clinical division of digestive system pathology in adults and children, Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences — Scientific Research Institute for Medical Problems of the North, Krasnoyarsk, Russian Federation

e-mail: tamara-polivanova@yandex.ru



Vitaliy A. Vshivkov
Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences — Scientific Research Institute for Medical Problems of the North
Russian Federation


Kseniya A. Anikina
Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences — Scientific Research Institute for Medical Problems of the North
Russian Federation


References

1. Zaprudnov A.M., Grigor’ev K.I., Kharitonova L.A. The place of pediatric gastroenterology in modern pediatrics. Rossiyskiy vestnik perinatologii i pediatrii. 2018; 63(3): 9–12. https://doi.org/10.21508/1027-4065-2018-63-3-9-12 https://elibrary.ru/xrhvch (in Russian)

2. Kharitonova L.A., Grigor’ev K.I., Zaprudnov A.M. From an idea to realities: modern successes of children’s gastroenterology. Eksperimental’naya i klinicheskaya gastroenterologiya. 2019; (11): 4–15. https://doi.org/10.31146/1682-8658-ecg-171-11-4-15 https://elibrary.ru/cdopkn (in Russian)

3. Ivashkin V.T., Maev I.V., Gorgun Yu.V., Kaliaskarova K.S., Karimov M.M., Kononov A.V., et al. Pathogenetic treatment of gastritis as a basis for the prevention of gastric cancer in the countries of the commonwealth of independent states. Rossiyskiy zhurnal gastroenterologii, gepatologii i koloproktologii. 2018; 28(4): 7–14. https://doi.org/10.22416/1382-4376-2018-28-4-7-14 (in Russian)

4. Zryachkin N.I., Chebotareva G.I., Buchkova T.N. Chronic gastritis and gastroduodenitis in preschool and school children. Voprosy detskoy dietologii. 2015; 13(4): 46–51. https://elibrary.ru/umodov (in Russian)

5. Dunlap J.J., Patterson S. Peptic ulcer disease. Gastroenterol. Nurs. 2019; 42(5): 451–4. https://doi.org/10.1097/SGA.0000000000000478

6. Mehraban Far P., Alshahrani A., Yaghoobi M. Quantitative risk of positive family history in developing colorectal cancer: A meta-analysis. World J. Gastroenterol. 2019; 25(30): 4278–91. https://doi.org/10.3748/wjg.v25.i30.4278

7. Safaee A., Moghimi-Dehkordi B., Fatemi S.R., Maserat E., Zali M.R. Family history of cancer and risk of gastric cancer in Iran. Asian Pac. J. Cancer Prev. 2011; 12(11): 3117–20.

8. Yaghoobi M., McNabb-Baltar J., Bijarchi R., Hunt R.H. What is the quantitative risk of gastric cancer in the first-degree relatives of patients? A meta-analysis. World J. Gastroenterol. 2017; 23(13): 2435–42. https://doi.org/10.3748/wjg.v23.i13.2435

9. Smyth E.C., Nilsson M., Grabsch H.I., van Grieken N.C., Lordick F. Gastric cancer. Lancet. 2020; 396(10251): 635–48. https://doi.org/10.1016/S0140-6736(20)31288-5

10. Lopatina V.V. Risk factors in the development of ulcer disease. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2011; (12): 16–8. https://elibrary.ru/ooqwkn (in Russian)

11. Koulis A., Buckle A., Boussioutas A. Premalignant lesions and gastric cancer: Current understanding. World J. Gastrointest. Oncol. 2019; 11(9): 665–78. https://doi.org/10.4251/wjgo.v11.i9.665

12. Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017; 18(2): 153–65. https://doi.org/10.1007/s11154-017-9424-1

13. Sirajudeen S., Shah I., Al Menhali A. A narrative role of vitamin D and its receptor: with current evidence on the gastric tissues. Int. J. Mol. Sci. 2019; 20(15): 3832. https://doi.org/10.3390/ijms20153832

14. Boyan B.D., Sylvia V.L., Dean D.D., Del Toro F., Schwartz Z. Differential regulation of growth plate chondrocytes by 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 involves cell-maturation-specific membrane-receptor-activated phospholipid metabolism. Crit. Rev. Oral. Biol. Med. 2002; 13(2): 143–54. https://doi.org/10.1177/154411130201300205

15. Mărginean C.O., Meliț L.E., Borka Balas R., Văsieșiu A.M., Fleșeriu T. The crosstalk between Vitamin D and pediatric digestive disorders. Diagnostics (Basel). 2022; 12(10): 2328. https://doi.org/10.3390/diagnostics12102328

16. Saggese G., Vierucci F., Prodam F., Cardinale F., Cetin I., Chiappini E., et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018; 44(1): 51. https://doi.org/10.1186/s13052-018-0488-7

17. Avdeeva V.A., Suplotova L.A., Pigarova E.A., Rozhinskaya L.Ya., Troshina E.A. Vitamin D deficiency in Russia: the first results of a registered, non-interventional study of the frequency of vitamin d deficiency and insufficiency in various geographic regions of the country. Problemy endokrinologii. 2021; 67(2): 84–92. https://doi.org/10.14341/probl12736 https://elibrary.ru/zeteue (in Russian)

18. Amrein K., Scherkl M., Hoffmann M., Neuwersch-Sommeregger S., Köstenberger M., Berisha A.T., et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur. J. Clin. Nutr. 2020; 74(11): 1498–513. https://doi.org/10.1038/s41430-020-0558-y

19. Lips P., Cashman K.D., Lamberg-Allardt C., Bischoff-Ferrari H.A., Obermayer-Pietsch B., Bianchi M.L., et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019; 180(4): 23–54. https://doi.org/10.1530/EJE-18-0736

20. Vil’ms E.A., Dobrovol’skaya E.V., Turchaninov D.V., Bykova E.A., Sokhoshko I.A. Provision of vitamin D in the adult population of western Siberia: a population-based study. Voprosy pitaniya. 2019; 88(4): 75–82. https://doi.org/10.24411/0042-8833-2019-10044 https://elibrary.ru/xdcigz (in Russian)

21. Weydert J.A. Vitamin D in children’s health. Children (Basel). 2014; 1(2): 208–26. https://doi.org/10.3390/children1020208

22. Paller A.S., Hawk J.L.M., Honig P., Giam Y.C., Hoath S., Mack M.C., et al. New insights about infant and toddler skin: implications for sun protection. Pediatrics. 2011; 128(1): 92–102. https://doi.org/10.1542/peds.2010-1079

23. Mansbach J.M., Ginde A.A., Camargo C.A.Jr. Serum 25-hydroxyvitamin D levels among US children aged 1 to 11 years: do children need more vitamin D? Pediatrics. 2009; 124(5): 1404–10. https://doi.org/10.1542/peds.2008-2041

24. Nair R., Maseeh A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012; 3(2): 118–26. https://doi.org/10.4103/0976-500X.95506

25. Cashman K.D., Dowling K.G., Škrabáková Z., Gonzalez-Gross M., Valtueña J., De Henauw S., et al. Vitamin D deficiency in Europe: pandemic? Am. J. Clin. Nutr. 2016; 103(4): 1033–44. https://doi.org/10.3945/ajcn.115.120873

26. Russo C., Valle M.S., Casabona A., Spicuzza L., Sambataro G., Malaguarnera L. Vitamin D impacts on skeletal muscle dysfunction in patients with COPD promoting mitochondrial health. Biomedicines. 2022; 10(4): 898. https://doi.org/10.3390/biomedicines10040898

27. Bhutia S.K. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J. Nutr. Biochem. 2022; 99: 108841. https://doi.org/10.1016/j.jnutbio.2021.108841

28. Sirajudeen S., Shah I., Ayoub M.A., Karam S.M., Al Menhali A. Long-term vitamin D deficiency results in the inhibition of cell proliferation and alteration of multiple gastric epithelial cell lineages in mice. Int. J. Mol. Sci. 2022; 23(12): 6684. https://doi.org/10.3390/ijms23126684

29. Smirnova G.I., Mankute G.R. Intestinal microbiota and atopic dermatitis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(6): 46–53. https://elibrary.ru/vkgooj (in Russian)

30. Smirnova G.I., Rumyantsev R.E. Vitamin D and allergic diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2017; 20(3): 166–72. https://doi.org/10.18821/1560-9561-2017-20(3)-166-172 https://elibrary.ru/yuivjh (in Russian)

31. Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311(5768): 1770–3. https://doi.org/10.1126/science.1123933

32. Veldman C.M., Cantorna M.T., DeLuca H.F. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch. Biochem. Biophys. 2000; 374(2): 334–8. https://doi.org/10.1006/abbi.1999.1605

33. Feng L., Wen M.Y., Zhu Y.J., Men R.T., Yang L. Sequential therapy or standard triple therapy for Helicobacter pylori infection: an updated systematic review. Am. J. Ther. 2016; 23(3): e880–93. https://doi.org/10.1097/MJT.0000000000000191

34. Yakovleva N.V., Smirnova G.I., Korsunskiy A.A. Modern aspects of Helicobacter pylori infection. Rossiyskiy pediatricheskiy zhurnal. 2023; 26(1): 67–74. https://doi.org/10.46563/1560-9561-2023-26-1-67-74 (in Russian)

35. Antico A., Tozzoli R., Giavarina D., Tonutti E., Bizzaro N. Hypovitaminosis D as predisposing factor for atrophic type a gastritis: a case-control study and review of the literature on the interaction of vitamin D with the immune system. Clin. Rev. Allergy. Immunol. 2012; 42: 355–64. https://doi.org/10.1007/s12016-011-8255-1

36. Knox T.A., Kassarjian Z., Dawson-Hughes B., Golner B.B., Dallal G.E., Arora S., et al. Calcium absorption in elderly subjects on high- and low-fiber diets: effect of gastric acidity. Am. J. Clin. Nutr. 1991; 53: 1480–6. https://doi.org/10.1093/ajcn/53.6.1480

37. Adachi Y., Shiota E., Matsumata T., Iso Y., Yoh R., Kitano S. Bone mineral density in patients taking H2-receptor antagonist. Calcif. Tissue Int. 1998; 62(4): 283–5. https://doi.org/10.1007/s002239900431

38. Ludden J., Flexner J., Wright I. Studies on ascorbic acid deficiency in gastric diseases: Incidence, diagnosis, and treatment. Am. J. Digest. Dis. 1941; 8: 249–52. https://doi.org/10.1007/BF02998342

39. Massironi S., Cavalcoli F., Zilli A., Del Gobbo A., Ciafardini C., Bernasconi S., et al. Relevance of vitamin D deficiency in patients with chronic autoimmune atrophic gastritis: a prospective study. BMC Gastroenterol. 2018; 18(1): 172. https://doi.org/10.1186/s12876-018-0901-0

40. Klimov L.Ya., Zakharova I.N., Abramskaya L.M., Stoyan M.V., Kur’yaninova V.A., Dolbnya S.V., et al. Vitamin D and chronic bowel diseases: role in pathogenesis and place in therapy. Prakticheskaya meditsina. 2017; (5): 59–64. https://elibrary.ru/zgwtxt (in Russian)

41. Dumitrescu G., Mihai C., Dranga M., Prelipcean C.C. Serum 25-hydroxyvitamin D concentration and inflammatory bowel disease characteristics in Romania. World J. Gastroenterol. 2014; 20(9): 2392–6. https://doi.org/10.3748/wjg.v20.i9.2392

42. Vernia F., Valvano M., Longo S., Cesaro N., Viscido A., Latella G. Vitamin D in inflammatory bowel diseases. Mechanisms of action and therapeutic implications. Nutrients. 2022; 14(2): 269. https://doi.org/10.3390/nu14020269

43. Liu W., Chen Y., Golan M.A., Annunziata M.L., Du J., Dougherty U., et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J. Clin. Invest. 2013; 123(9): 3983–96. https://doi.org/10.1172/JCI65842

44. Golan M.A., Liu W., Shi Y., Chen L., Wang J., Liu T., et al. Transgenic expression of vitamin D receptor in gut epithelial cells ameliorates spontaneous colitis caused by interleukin-10 deficiency. Dig. Dis. Sci. 2015; 60(7): 1941–7. https://doi.org/10.1007/s10620-015-3634-8

45. Wu S., Zhang Y.G., Lu R., Xia Y., Zhou D., Petrof E., et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015; 64(7): 1082–94. https://doi.org/10.1136/gutjnl-2014-307436

46. Wu S., Yoon S., Zhang Y.G., Lu R., Xia Y., Wan J., et al. Vitamin D receptor pathway is required for probiotic protection in colitis. Am. J. Physiol. Gastrointest. Liver. Physiol. 2015; 309(5): G341–9. https://doi.org/10.1152/ajpgi.00105.2015

47. Wu S., Liao A.P., Xia Y., Li Y.C., Li J.D., Sartor R.B., et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am. J. Pathol. 2010; 177(2): 686–97. https://doi.org/10.2353/ajpath.2010.090998

48. Bashir M., Prietl B., Tauschmann M., Mautner S.I., Kump P.K., Treiber G., et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur. J. Nutr. 2016; 55(4): 1479–89. https://doi.org/10.1007/s00394-015-0966-2

49. Mora J.R., Iwata M., von Andrian U.H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 2008; 8(9): 685–98. https://doi.org/10.1038/nri2378

50. Boonstra A., Barrat F.J., Crain C., Heath V.L., Savelkoul H.F., O’Garra A. 1a, 25-dihydroxyvitamin D3 has a direct effect on Naive CD4+ T cells to enhance the development of Th2 cells. J. Immunol. 2001; 167(9): 4974. https://doi.org/10.4049/jimmunol.167.9.4974

51. Zhao H., Zhang H., Wu H., Li H., Liu L., Guoet J., et al. Protective role of 1,25(OH) 2 vitamin D 3, in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol. 2012; 12: 57. https://doi.org/10.1186/1471-230X-12-57

52. Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic pseudomonas aeruginosa infection in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(3): 50–3. https://elibrary.ru/uaxnwb (in Russian)

53. Morin G., Orlando V., Crites K.S.M., Patey N., Mailhot G. Vitamin D attenuates inflammation in CFTR knockdown intestinal epithelial cells but has no effect in cells with intact CFTR. Am. J. Physiol. Gastrointest. Liver Physiol. 2016; 310(8): 539–49. https://doi.org/10.1152/ajpgi.00060.2015

54. Smirnova G.I. Current concepts of atopic dermatitis in children: problems and prospects. Rossiyskiy pediatricheskiy zhurnal. 2017; 20(2): 99–107. https://doi.org/10.18821/1560-9561-2017-20-2-99-107 https://elibrary.ru/yhgnib (in Russian)

55. Allen K.J., Koplin J.J., Ponsonby A.L., Gurrin L.C., Wake M., Vuillermin P., et al. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J. Allergy. Clin. Immunol. 2013; 131(4): 1109–16. https://doi.org/10.1016/j.jaci.2013.01.017

56. Peroni D.G., Boner A.L. Food allergy: the perspectives of prevention using vitamin D. Curr. Opin. Allergy. Clin. Immunol. 2013; 13(3): 287–92. https://doi.org/10.1097/ACI.0b013e328360ed9c

57. Vassallo M.F., Camargo C.A.Jr. Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children. Allergy. Clin. Immunol. 2010; 126(2): 217–22. https://doi.org/10.1016/j.jaci.2010.06.011

58. Poole A., Song Y., Brown H., Hart P.H., Zhang G.B. Cellular and molecular mechanisms of vitamin D in food allergy. J. Cell. Mol. Med. 2018; 22(7): 3270–7. https://doi.org/10.1111/jcmm.13607

59. Matsui T., Tanaka K., Yamashita H., Saneyasu K.I., Tanaka H., Takasato Y., et al. Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergol. Int. 2019; 68(2): 172–7. https://doi.org/10.1016/j.alit.2018.12.003

60. Giannetti A., Bernardini L., Cangemi J., Gallucci M., Masetti R., Ricci G. Role of vitamin D in prevention of food allergy in infants. Front. Pediatr. 2020; 8: 447. https://doi.org/10.3389/fped.2020.00447


Review

For citations:


Polivanova T.V., Vshivkov V.A., Anikina K.A. Vitamin D deficiency in children and pathology of the digestive system. Russian Pediatric Journal. 2023;26(3):212-217. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-3-212-217. EDN: mdzwli

Views: 206


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)