Serratia marcescens: microbiological characterization, resistance properties, virulence and clinical relevance
https://doi.org/10.46563/1560-9561-2023-26-3-222-226
EDN: snynhv
Abstract
Serratia marcescens (SM) is among the most relevant pathogens of opportunistic infections. This review contains an analysis of the literature data on the importance of serrations in medical practice. Molecular genetic predictors of virulence and antibiotic resistance of this pathogen were analyzed in detail. The review discusses the main methods of typing SM. Various local and generalized s of infections caused by SM are described.
Contribution:
Sadeeva Z.Z., Lazareva A.V. — research concept and design of the study, text writing;
Sadeeva Z.Z., Novikova I.E., Alyabyeva N.M. — collection and processing of material;
Lazareva A.V., Alyabyeva N.M. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: April 26, 2023
Accepted: May 16, 2023
Published: June 27, 2023
About the Authors
Zulfirya Z. SadeevaRussian Federation
Junior Researcher of the Laboratory of Molecular Microbiology of the National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: zulfiryasadeeeva@yandex.ru
Irina E. Novikova
Russian Federation
Natalya M. Alyabyeva
Russian Federation
Anna V. Lazareva
Russian Federation
References
1. Abreo E., Altier N. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Sci. Rep. 2019; 9(1): 46. https://doi.org/10.1038/s41598-018-37118-0
2. Breijyeh Z., Jubeh B., Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020; 25(6): 1340. https://doi.org/10.3390/molecules25061340
3. Grimont P.A., Grimont F. The genus Serratia. Annu. Rev. Microbiol. 1978; 32: 221–48. https://doi.org/10.1146/annurev.mi.32.100178.001253
4. Pokrovskiy V.I. Enterobacteria [Enterobakterii]. Мoscow: Meditsina; 1985. (in Russian)
5. Mahlen S.D. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 2011; 24(4): 755–91. https://doi.org/10.1128/CMR.00017-11
6. Petersen L.M., Tisa L.S. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Can. J. Microbiol. 2013; 59(9): 627–40. https://doi.org/10.1139/cjm-2013-0343
7. Benagli C., Rossi V., Dolina M., Tonolla M., Petrini O. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One. 2011; 6(1): e16424. https://doi.org/10.1371/journal.pone.0016424
8. Zhang C., Yu Z., Zhang M., Li X., Wang M., Li L., et al. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. J. Exp. Bot. 2022; 73(11): 3711–25. https://doi.org/10.1093/jxb/erac074
9. Starr M.P., Grimont P.A., Grimont F., Starr P.B. Caprylate-thallous agar medium for selectively isolating Serratia and its utility in the clinical laboratory. J. Clin. Microbiol. 1976; 4(3): 270–6. https://doi.org/10.1128/jcm.4.3.270-276.1976
10. Bourdin T., Monnier A., Benoit M.È., Bédard E., Prévost M., Quach C., et al. A high-throughput short sequence typing scheme for Serratia marcescens pure culture and environmental DNA. Appl. Environ. Microbiol. 2021; 87(24): e0139921. https://doi.org/10.1128/AEM.01399-21
11. Besler K.R., Little E.L. Diversity of Serratia marcescens strains associated with cucurbit yellow vine disease in Georgia. Plant Dis. 2017; 101(1): 129–36. https://doi.org/10.1094/PDIS-05-16-0618-RE
12. Kampmeier S., Prior K., Cunningham S.A., Goyal A., Harmsen D., Patel R., et al. Development and evaluation of a core genome Multilocus Sequencing Typing (cgMLST) scheme for Serratia marcescens molecular surveillance and outbreak investigations. J. Clin. Microbiol. 2022; 60(11): e0119622. https://doi.org/10.1128/jcm.01196-22
13. Xu Q., Fu Y., Zhao F., Jiang Y., Yu Y. Molecular characterization of carbapenem-resistant serratia marcescens clinical isolates in a tertiary hospital in Hangzhou, China. Infect. Drug Resist. 2020; 13: 999–1008. https://doi.org/10.2147/IDR.S243197
14. Ruiz-Sada P., Escalante M., Lizarralde E. Severe acute infection due to Serratia marcescens causing respiratory distress in an immunocompetent adult. Rom. J. Intern. Med. 2016; 54(2): 134–6. https://doi.org/10.1515/rjim-2016-0013
15. AMRbook. Database of resistance. Available at: https://amrbook.ru/activity (in Russian)
16. Bolourchi N., Goodarzi N., Giske C.G., Nematzadeh S., Haririzadeh Jouriani F., Solgi H., et al. Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene. 2022; 822: 146355. https://doi.org/10.1016/j.gene.2022.146355
17. Iguchi A., Nagaya Y., Pradel E., Ooka T., Ogura Y., Katsura K., et al. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome. Biol. Evol. 2014; 6(8): 2096–110. https://doi.org/10.1093/gbe/evu160
18. Zhao W.H., Hu Z.Q., Chen G., Matsushita K., Fukuchi K., Shimamura T. Characterization of imipenem-resistant Serratia marcescens producing IMPtype and TEM-type β-lactamases encoded on a single plasmid. Microbiol. Res. 2007; 162(1): 46–52. https://doi.org/10.1016/j.micres.2006.06.005
19. da Costa Guimarães A.C., Almeida A.C., Nicoletti A.G., Vilela M.A., Gales A.C., de Morais M.M. Clonal spread of carbapenem-resistant Serratia marcescens isolates sharing an IncK plasmid containing blaKPC-2. Int. J. Antimicrob. Agents. 2013; 42(4): 369–70. https://doi.org/10.1016/j.ijantimicag.2013.05.017
20. Sands K., Carvalho M.J., Portal E., Thomson K., Dyer C., Akpulu C., et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021; 6(4): 512–23. https://doi.org/10.1038/s41564-021-00870-7
21. Sidorenko S.V., Tishkov V.I. Molecular foundations of antibiotic resistance. Uspekhi biologicheskoy khimii. 2004; 44(2): 263–306. (in Russian)
22. Gruber T.M., Göttig S., Mark L., Christ S., Kempf V.A., Wichelhaus T.A., et al. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1. J. Antimicrob. Chemother. 2015; 70(4): 1026–30. https://doi.org/10.1093/jac/dku482
23. Bidwell J.L., Reeves D.S., Bullock D.V. Diversity of R-plasmids in epidemic Serratia marcescens from the South West of Ingland. In: New Trends in Antibiotics: Research and Therapy. Amsterdam: Elsevier; 1981: 268–70.
24. Létoffé S., Ghigo J.M., Wandersman C. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc. Natl. Acad. Sci. USA. 1994; 91(21): 9876–80. https://doi.org/10.1073/pnas.91.21.9876
25. Kanonenberg K., Schwarz C.K., Schmitt L. Type I secretion systems – a story of appendices. Res. Microbiol. 2013; 164(6): 596–604. https://doi.org/10.1016/j.resmic.2013.03.011
26. Korotkov K.V., Sandkvist M., Hol W.G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 2012; 10(5): 336–51. https://doi.org/10.1038/nrmicro2762
27. Grijpstra J., Arenas J., Rutten L., Tommassen J. Autotransporter secretion: varying on a theme. Res. Microbiol. 2013; 164(6): 562–82. https://doi.org/10.1016/j.resmic.2013.03.010
28. Piccirilli A., Cherubini S., Brisdelli F., Fazii P., Stanziale A., Di Valerio S., et al. Molecular characterization by whole-genome sequencing of clinical and environmental Serratia marcescens strains isolated during an outbreak in a Neonatal Intensive Care Unit (NICU). Diagnostics (Basel). 2022; 12(9): 2180. https://doi.org/10.3390/diagnostics12092180
29. Labinskaya A.S., Kostyukova N.N., eds. Manual of Medical Microbiology. Book III. Volume One. Opportunistic Infections: Pathogens and Etiological Diagnostics [Rukovodstvo po meditsinskoy mikrobiologii. Kniga III. Tom pervyy. Opportunisticheskie infektsii: vozbuditeli i etiologicheskaya diagnostika]. Moscow: BINOM; 2020: 243–86. (in Russian)
30. Shimuta K., Ohnishi M., Iyoda S., Gotoh N., Koizumi N., Watanabe H. The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol. 2009; 9: 261. https://doi.org/10.1186/1471-2180-9-261
31. Han R., Xiang R., Li J., Wang F., Wang C. High-level production of microbial prodigiosin: A review. J. Basic Microbiol. 2021; 61(6): 506–23. https://doi.org/10.1002/jobm.202100101
32. Haddix P.L., Jones S., Patel P., Burnham S., Knights K., Powell J.N., et al. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens. J. Bacteriol. 2008; 190(22): 7453–63. https://doi.org/10.1128/JB.00909-08
33. Buttinelli E., Ardoino I., Lanzoni M., Domeniconi G., Pugni L., Ronchi A., et al. Epidemiology of Serratia marcescens infections in NICU of a teaching and research hospital in Northern Italy. Minerva Pediatr. (Torino). 2023; 75(2): 180–7. https://doi.org/10.23736/s2724-5276.17.04856-3
34. Shanks R.M., Stella N.A., Kalivoda E.J., Doe M.R., O’Dee D.M., Lathrop K.L., et al. A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. J. Bacteriol. 2007; 189(20): 7262–72. https://doi.org/10.1128/JB.00859-07
35. Khaitlina S., Bozhokina E., Tsaplina O., Efremova T. Bacterial actin-specific endoproteases grimelysin and protealysin as virulence factors contributing to the invasive activities of Serratia. Int. J. Mol. Sci. 2020; 21(11): 4025. https://doi.org/10.3390/ijms21114025
36. Zhang L., Morrison A.J., Thibodeau P.H. Interdomain contacts and the stability of Serralysin protease from Serratia marcescens. PLoS One. 2015; 10(9): e0138419. https://doi.org/10.1371/journal.pone.0138419
37. Akatsuka H., Binet R., Kawai E., Wandersman C., Omori K. Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. J. Bacteriol. 1997; 179(15): 4754–60. https://doi.org/10.1128/jb.179.15.4754-4760.1997
38. Pineda-Castellanos M.L., Rodríguez-Segura Z., Villalobos F.J., Hernández L., Lina L., Nuñez-Valdez M.E. Pathogenicity of isolates of Serratia marcescens towards larvae of the scarab Phyllophaga blanchardi (Coleoptera). Pathogens. 2015; 4(2): 210–28. https://doi.org/10.3390/pathogens4020210
39. Bruna R.E., Molino M.V., Lazzaro M., Mariscotti J.F., García Véscovi E. CpxR-dependent thermoregulation of Serratia marcescens PrtA metalloprotease expression and its contribution to bacterial biofilm formation. J. Bacteriol. 2018; 200(8): e00006–18. https://doi.org/10.1128/JB.00006-18
40. Choe H.S., Son S.W., Choi H.A., Kim H.J., Ahn S.G., Bang J.H., et al. Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am. J. Infect. Control. 2012; 40(9): e249–e254. https://doi.org/10.1016/j.ajic.2012.05.010
41. Robertson D., Patel N., Hinojosa J., Zhu M. Microbial colonization of contact lens surfaces in the presence of neutrophils. Contact Lens and Anterior Eye. 2018; 41(Suppl. 1): S20. https://doi.org/10.1016/j.clae.2018.04.144
42. Moles L., Gómez M., Moroder E., Jiménez E., Escuder D., Bustos G., et al. Serratia marcescens colonization in preterm neonates during their neonatal intensive care unit stay. Antimicrob. Resist. Infect. Control. 2019; 8: 135. https://doi.org/10.1186/s13756-019-0584-5
43. Fekrirad Z., Gattali B., Kashef N. Quorum sensing-regulated functions of Serratia marcescens are reduced by eugenol. Iran. J. Microbiol. 2020; 12(5): 451–9. https://doi.org/10.18502/ijm.v12i5.4607
44. Abbas H.A., Elsherbini A.M. Silencing the nosocomial pathogen Serratia marcescens by glyceryl trinitrate. Afr. Health Sci. 2018; 18(1): 1–10. https://doi.org/10.4314/ahs.v18i1.2
45. Brouqui P., Raoult D. Endocarditis due to rare and fastidious bacteria. Clin. Microbiol. Rev. 2001; 14(1): 177–207. https://doi.org/10.1128/CMR.14.1.177-207.2001
46. Elkattawy S., Mohammadian M., Williams N., Mowafy A., Ayad S., Noori M.A.M., et al. Serratia marcescens endocarditis. Cureus. 2021; 13(8): e17346. https://doi.org/10.7759/cureus.17346
47. Momose T., Masutani S., Oshima A., Kawasaki H., Tanaka R., Iwamoto Y., et al. First pediatric case of infective endocarditis caused by Serratia liquefaciens. Int. Heart J. 2018; 59(6): 1485–7. https://doi.org/10.1536/ihj.17-595
48. Cilli F., Nazli-Zeka A., Arda B., Sipahi O.R., Aksit-Barik S., Kepeli N., et al. Serratia marcescens sepsis outbreak caused by contaminated propofol. Am. J. Infect. Control. 2019; 47(5): 582–4. https://doi.org/10.1016/j.ajic.2018.10.014
49. González Sanchidrián S., Marín Álvarez J.P., Deira Lorenzo J., Labrador Gómez P.J., Gómez-Martino Arroyo J.R. Serratia marcescens bacteraemia outbreak in hemodialysis. Comment on «Serratia marcescens bacteraemia outbreak in haemodialysis patients with tunnelled catheters due to colonisation of antiseptic solution. Experience from 4 hospitals». Nefrologia (Engl. Ed.). 2018; 38(1): 94–6. https://doi.org/10.1016/j.nefro.2016.12.003
50. Ersoz G., Uguz M., Aslan G., Horasan E.S., Kaya A. Outbreak of meningitis due to Serratia marcescens after spinal anaesthesia. J. Hosp. Infect. 2014; 87(2): 122–5. https://doi.org/10.1016/j.jhin.2014.03.004
51. Papazoglou N., Samarkos M., Vergadis C., Cholongitas E. Abdominal aorta aneurysm endograft infection mimicking bacteraemic urinary tract infection. Hippokratia. 2021; 25(2): 91–3.
Review
For citations:
Sadeeva Z.Z., Novikova I.E., Alyabyeva N.M., Lazareva A.V. Serratia marcescens: microbiological characterization, resistance properties, virulence and clinical relevance. Russian Pediatric Journal. 2023;26(3):222-226. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-3-222-226. EDN: snynhv