Preview

Russian Pediatric Journal

Advanced search

Glutamic acid, glutamate receptors, and nitric oxide in hypoxic brain damage

https://doi.org/10.46563/1560-9561-2025-28-3-197-205

Abstract

Introduction. Multifunctional glutamic acid (glutamate, Glu) is the main excitatory neurotransmitter in the central nervous system (CNS). By providing excitatory neurotransmission, Glu activates glutamate receptors (GluRc) associated with the intake of calcium (Ca2+). Acute and chronic Glu excitotoxicity and nitric oxide (NO) play a leading role in the mechanisms of neuron death during brain hypoxia, which accompanies cerebral circulatory disorders (CCD), strokes, epilepsy, traumatic brain injury (TBI), and neurodegenerative diseases. The aim of the study was to determine changes in the content of glutamic acid in the blood and cerebrospinal fluid (CSF) and the functional activity of GluRc receptors in children with various forms of hypoxic brain damage.
Materials and methods. Seventy nine CCD newborns, 36 children with congenital hydrocephalus, 58 children with acute lymphoblastic leukemia complicated by neuroleukemia, 42 children with epilepsy and paroxysmal conditions, and 159 children with TBI were examined. The content of Glu, glutamine (Gln), ammonia and biochemical markers of hypoxia (glucose, lactate) were determined in CSF and blood in CCD newborns using enzyme methods. The content of autoantibodies to NMDA and AMP GluRc was determined by enzyme immunoassay methods. The content of NO and its transformation products was estimated by the total content of nitrites and nitrates using the Griss method.
Results. As the severity of hypoxic brain damage increased, glucose levels decreased in the CSF of newborns, the content of lactate, protein, ammonia, and Glu increased, and the permeability of the brain-blood barrier increased. At the same time, the more pronounced brain damage was observed in children with various hypoxic CNS injuries, the higher the levels of Glu, total protein, and CA were observed in CSF.
Conclusion. The established patterns allowed determining the importance of NO and its conversion products in the functional activity of GluRc and showing the involvement of NO in protective and damaging processes in brain tissue.

About the Authors

Elena G. Sorokina
National Medical Research Center for Children’s Health of the Ministry of Health of Russia
Russian Federation


Valentin P. Reutov
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
Russian Federation


Zhanna B. Semenova
Research Institute of Emergency Pediatric Surgery and Traumatology
Russian Federation


Olga V. Karaseva
Research Institute of Emergency Pediatric Surgery and Traumatology
Russian Federation


Oksana V. Globa
National Medical Research Center for Children’s Health of the Ministry of Health of Russia
Russian Federation


Ludmila M. Kuzenkova
National Medical Research Center for Children’s Health of the Ministry of Health of Russia
Russian Federation


Vsevolod G. Pinelis
National Medical Research Center for Children’s Health of the Ministry of Health of Russia
Russian Federation


Ivan E. Smirnov
National Medical Research Center for Children’s Health of the Ministry of Health of Russia
Russian Federation


References

1. Reutov V.P., Pasikova N.V., Sorokina E.G. Typical pathological process in glutamate neurotoxicity: the role of reactive nitrogen and oxygen species. Biophysics. 2024; 69(5): 905–36. https://doi.org/10.1134/S0006350924701008

2. Traynelis S.F., Wollmuth L.P., McBain C.J. Menniti F.S., Vance K.M., Ogden K.K., et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010; 62(3): 405–96. https://doi.org/10.1124/pr.109.002451

3. Homola A., Zoremba N., Slais K., Kuhlen R., Syková E. Changes in diffusion parameters, energy-related metabolites and glutamate in the rat cortex after transient hypoxia/ischemia. Neurosci. Lett. 2006; 404(1-2): 137–42. https://doi.org/10.1016/j.neulet.2006.05.028

4. Wang Y., Qin Z.H. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010; 15(11): 382–1402. https://doi.org/10.1007/s10495-010-0481-0

5. Choi D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988; 1(8): 623–34. https://doi.org/10.1016/0896-6273(88)90162-6

6. Реутов В.П., Сорокина Е.Г., Пинелис В.Г. Оценка гибели нейронов при воздействии глутамата и NO-генерирующих соединений на зернистые клетки мозжечка крыс. Евразийский союз ученых. Серия: медицинские, биологические и химические науки. 2023; (6): 15–24. https://doi.org/10.31618/ESU.2413-9335.2023.4.107.1834 https://elibrary.ru/zxevsi

7. Reutov V.P., Samosudova N.V., Sorokina E.G. A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process. Biophysics. 2019; 64(2): 233–50. https://doi.org/10.1134/S0006350919020143

8. Dambinova S.A., Granstrem O.K., Tourov A., Salluzzo R., Castello F., Izykenova G.A. Monitoring of brain spiking activity and autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptors in blood serum of rats with cobalt-induced epilepsy. J. Neurochem. 1998; 71(5): 2088–93. https://doi.org/10.1046/j.1471-4159.1998.71052088.x

9. Dambinova S.A., Khounteev G.A., Izykenova G.A., Zavolokov I.G., Ilyukhina A.Y., Skoromets A.A. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin. Chem. 2003; 49(10): 1752–62. https://doi.org/10.1373/49.10.1752

10. Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 2006; 98(3): 641–53. https://doi.org/10.1111/j.1471-4159.2006.03913.x

11. Visacorpy J.K., Wasz-Hockert O., Torma T. The amino acids of cerebrospinal fluid in various diseases affecting the central nervous system. Ann. Paediatr. Fenn. 1964; 10(1): 24–35.

12. Heiblim D.I., Evans H.E., Glass L., Agbayani M.M. Child neurology: Amino acid concentrations in cerebrospinal fluid. Arch. Neurol. 1978; 35(11): 765–8. https://doi.org/10.1001/archneur.1978.00500350069015

13. Tikanoja T., Simell O., Viikari M., Järvenpää A.L. Plasma amino acids in term neonates after a feed of human milk or formula. II. Characteristic changes in individual amino acids. Acta Paediatr. Scand. 1982; 71(3): 391–7. https://doi.org/10.1111/j.1651-2227.1982.tb09440.x

14. Цветанова E.M. Ликворология. Киев; 1986.

15. Sorokina E.G., Reutov V.P., Pinelis V.G., Vinskaya N.P., Vergun O.V., Khodorov B.I. The mechanism of potentiation of the glutamate-induced neurotoxicity by serum albumin. A possible role of nitric oxide. Membr. Cell Biol. 2000; 13(3): 389–96.

16. Arvin B., Neville L.F., Barone F.C., Feuerstein G.Z. The role of inflammation and cytokines in brain injury. Neurosci. Biobehav. Rev. 1996; 20(3): 445–52. https://doi.org/10.1016/0149-7634(95)00026-7

17. Bradbury A.W., Murie J.A., Ruckley C.V. Role of the leucocyte in the pathogenesis of vascular disease. Br. J. Surg. 1993; 80(12): 1503–12. https://doi.org/10.1002/bjs.1800801204

18. Ley K., Reutershan J. Leucocyte-endothelial interactions in health and disease. Handb. Exp. Pharmacol. 2006; 176(Pt. 2): 97–133. https://doi.org/10.1007/3-540-36028-x_4

19. Hauser B., Matejovic M., Radermacher P. Nitric oxide, leukocytes and microvascular permeability: causality or bystanders? Crit. Care. 2008; 12(1): 104. https://doi.org/10.1186/cc6214

20. Реутов В.П., Орлов С.Н. Физиологическое значение гуанилатциклазы и роли окиси азота и нитросоединений в регуляции активности этого фермента. Физиология человека. 1993; 79(1): 124–37.

21. Sorokina E.G., Semenova Zh.B., Bazarnaya N.A., Meshcheryakov S.V., Reutov V.P., Goryunova A.V., et al. Autoantibodies to glutamate receptors and products of nitric oxide metabolism in serum in children in the acute phase of craniocerebral trauma. Neurosci. Behav. Physiol. 2009; 39(4): 329–34. https://doi.org/10.1007/s11055-009-9147-1

22. Sorokina E.G., Semenova Z.B., Reutov V.P., Arsenieva E.N., Karaseva O.V., Fisenko A.P., et al. Brain biomarkers in children after mild and severe traumatic brain injury. Acta Neurochir. Suppl. 2021; 131: 103–7. https://doi.org/10.1007/978-3-030-59436-7_22

23. Pal M.M. Glutamate: the master neurotransmitter and its implications in chronic stress and mood disorders. Front. Hum. Neurosci. 2021; 15: 722323. https://doi.org/10.3389/fnhum.2021.722323

24. Andersen J.V., Markussen K.H., Jakobsen E., Schousboe A., Waagepetersen H.S., Rosenberg P.A., et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021: 196: 108719. https://doi.org/10.1016/j.neuropharm.2021.108719

25. Andersen J.V. The glutamate/GABA-glutamine cycle: insights, updates, and advances. J. Neurochem. 2025; 169(3): e70029. https://doi.org/10.1111/jnc.70029

26. Andersen J.V., Schousboe A., Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Prog. Neurobiol. 2022; 217: 102331. https://doi.org/10.1016/j.pneurobio.2022.102331

27. Andersen J.V., Schousboe A. Glial glutamine homeostasis in health and disease. Neurochem. Res. 2023; 48(4): 1100–28. https://doi.org/10.1007/s11064-022-03771-1

28. McKenna M.C. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J. Neurosci. Res. 2007; 85(15): 3347–58. https://doi.org/10.1002/jnr.21444

29. Marcadia G., Felipo V., Hermenegildo C., Minana M.D., Grisolia S. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 1992; 296(1): 67–8. https://doi.org/10.1016/0014-5793(92)80404-5

30. Сорокина Е.Г., Реутов В.П., Карасева О.В., Семенова Ж.Б., Пинелис В.Г., Смирнов И.Е. и др. Влияние NO-генерирующих соединений на содержание аденозинтрифосфата в лимфоцитах и связи с уровнями аутоантител к рецепторам глутамата у детей, перенёсших черепно-мозговую травму. Российский педиатрический журнал. 2024; 27(3): 161–7. https://doi.org/10.46563/1560-9561-2024-27-3-161-167 https://elibrary.ru/vjvlht

31. Lombardi G., Dianzani C., Miglio G., Canonico P.L., Fantozzi R. Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 2001; 133(6): 936–44. https://doi.org/10.1038/sj.bjp.0704134

32. Bogdan C. Nitric oxide and the immune response. Nat. Immunol. 2001; 2(10): 907–16. https://doi.org/10.1038/ni1001-907

33. Archelos J.J., Hartung H.P. Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci. 2000; 23(7): 317–27. https://doi.org/10.1016/s0166-2236(00)01575-7

34. Reutov V.P. Nitric oxide cycle in mammals and the cyclicity principle. Biochemistry (Moscow). 2002; 67(3): 293–311. https://doi.org/10.1023/a:1014832416073


Review

For citations:


Sorokina E.G., Reutov V.P., Semenova Zh.B., Karaseva O.V., Globa O.V., Kuzenkova L.M., Pinelis V.G., Smirnov I.E. Glutamic acid, glutamate receptors, and nitric oxide in hypoxic brain damage. Russian Pediatric Journal. 2025;28(3):197-205. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-3-197-205

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)