Algorithm for immunological examination of children with immune-dependent diseases to predict the effectiveness of biological therapy
https://doi.org/10.46563/1560-9561-2025-28-6-408-419
EDN: yymyqa
Abstract
Introduction. The emergence of a wide range of genetically engineered biological products (GEBP) opens up opportunities for a personalized approach in the treatment of immune-dependent diseases. The development of methods for predicting the effectiveness of biological therapy for timely treatment correction is of particular relevance. Laboratory and clinical biomarkers are being studied.
Materials and methods. A laboratory examination was conducted on 486 children aged of 3.5 to 18 years with inflammatory bowel diseases (IBD), 182 children with psoriasis (PS), and 147 children with multiple sclerosis (MS). The study included a set of quantitative and functional indicators: the content of basic (T, B, NK cells) and small populations of lymphocytes (Th17 lymphocytes, regulatory T cells (Treg), activated T helper cells), populations of memory T cells, populations of myeloid suppressor cells (MDSCs), Treg with CD39 ectonucleotidase expression, succinate dehydrogenase (SDH) activity in lymphocyte populations, and nuclear factor kB (NF-kB) activity in lymphocyte populations. The comparison group consisted of 100 conditionally healthy children of comparable age. The diagnostic and prognostic significance of immunological parameters and the level of threshold values (cut-off) were evaluated using the method of characteristic curves (ROC analysis).
Results. A high probability of predicting (> 70%) the effect of GIBP therapy was obtained for the Th17/Treg index, regardless of the form of pathology and duration of therapy; for the absolute content of regulatory cells (Treg and MDSCs), regardless of the form of pathology during the maintenance course of GIBP; the activity of ADHD in Treg — in IBD and PS, regardless of the duration of therapy; the combination of ADHD activity in Treg and the Th17/Treg index in IBD, PS and MS, regardless of the duration of therapy; memory T cell subpopulations in IBD, PS and MS during the maintenance course; the relative Treg content with ectonucleotidase CD39 expression in IBD and MS after the induction course. Exceeding the threshold values for NF-κB levels in NK cells has been shown to predicts the activation of the inflammatory process in children with IBD, PS, and MS with a high probability (> 70%).
Conclusion. A 2-stage algorithm for immunological examination of children with IBD, PS, and MS has been developed based on informative immunological indicators, which allow for a high probability of predicting the effect of biological therapy and the activity of the inflammatory process before the administration of GIBPs and during the maintenance course.
Contribution:
Radygina T.V., Petrichuk S.V. — research concept and design;
Radygina T.V., Petrichuk S.V., Kuptsova D.G., Kurbatova O.V., Anushenko A.O., Opryatin L.A., Abdullaeva L.M., Freidlin E.V. — collection and processing of material;
Radygina T.V., Petrichuk S.V. — writing the text;
Fisenko A.P., Potapov A.S., Murashkin N.N., Kuzenkova L.M. — editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study was supported by a state assignment from the Russian Ministry of Health, № 119013090093-2, 122040800220-9.
Conflict of interest. The authors declare no conflict of interest.
Received: November 10, 2025
Accepted: November 27, 2025
Published: December 25, 2025
About the Authors
Tatiana V. RadyginaRussian Federation
PhD, senior research, Laboratory of experimental immunology and virology, National Medical Research Center for Children’s Health
e-mail: radigina.tv@nczd.ru
Svetlana V. Petrichuk
Russian Federation
Andrey P. Fisenko
Russian Federation
Darya G. Kuptsova
Russian Federation
Olga V. Kurbatova
Russian Federation
Anton O. Anushenko
Russian Federation
Leonid A. Opryatin
Russian Federation
Luizat M. Abdullaeva
Russian Federation
Ekaterina V. Freydlin
Russian Federation
Alexander S. Potapov
Russian Federation
Nikolay N. Murashkin
Russian Federation
Lyudmila M. Kuzenkova
Russian Federation
References
1. Califf R.M. Biomarker definitions and their applications. Exp. Biol. Med. (Maywood). 2018; 243(3): 213–21. https://doi.org/10.1177/1535370217750088
2. Costa J., Macaron G., Khaled K.J. Biomarkers in multiple sclerosis: An update. Biomark. Neuropsychiatry. 2023; 9: 100075. https://doi.org/10.1016/j.bionps.2023.100075
3. Amini Kadijani A., Asadzadeh Aghdaei H., Sorrentino D., Mirzaei A., Shahrokh S., Balaii H., et al. Transmembrane TNF-α density, but not soluble TNF-α Level, is associated with primary response to infliximab in inflammatory bowel disease. Clin. Transl. Gastroenterol. 2017; 8(9): e117. https://doi.org/10.1038/ctg.2017.44
4. Liu D., Saikam V., Skrada K.A., Merlin D., Iyer S.S. Inflammatory bowel disease biomarkers. Med. Res. Rev. 2022; 42(5): 1856–87. https://doi.org/10.1002/med.21893
5. Hsieh C.L., Yu S.J., Lai K.L., Chao W.T., Yen C.Y. IFN-γ, IL-17A, IL-4, and IL-13: Potential biomarkers for prediction of the effectiveness of biologics in psoriasis patients. Biomedicines. 2024; 12(5): 1115. https://doi.org/10.3390/biomedicines12051115
6. Ayrignac X., Le Bars E., Duflos C., Hirtz C., Maleska Maceski A., Carra-Dallière C., et al. Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity. Sci. Rep. 2020; 10(1): 10923. https://doi.org/10.1038/s41598-020-67934-2
7. Offenheim R., Cruz-Correa O.F., Ganatra D., Gladman D.D. Candidate biomarkers for response to treatment in psoriatic disease. J. Rheumatol. 2024; 51(12): 1176–86. https://doi.org/10.3899/jrheum.2024-0396
8. Kurbatova O.V., Petrichuk S.V., Movsisyan G.B., Kuptsova D.G., Radygina T.V., Anushenko A.O., et al. Role of minor lymphocyte populations in development of liver fibrosis in children with glycogen storage disease. Rossiiskiy immunologicheskiy zhurnal. 2023; 26(3): 337–44. https://doi.org/10.46235/1028-7221-10013-ROM https://elibrary.ru/fklrml (in Russian)
9. Petrichuk S.V., Miroshkina L.V., Semikina E.L., Toptygina A.P., Potapov A.S., Tsimbalova E.G., et al. Indiсators of the lymphocyte subsets as efficiciency predictors of therapy with inhibitors of TNFα in children with inflammatory bowel disease. Meditsinskaya immunologiya. 2018; 20(5): 721–30. https://doi.org/10.15789/1563-0625-2018-5-721-730 https://elibrary.ru/yltkuh (in Russian)
10. Radygina T.V., Kuptsova D.G., Petrichuk S.V., Potapov A.S., Murashkin N.N., Abdullaeva L.M., et al. Content of myeloid-derived suppressor cells in autoimmune diseases in children. Rossiiskiy immunologicheskiy zhurnal. 2023; 26(3): 381–8. https://doi.org/10.46235/1028-7221-10044-COM https://elibrary.ru/jiiodk (in Russian)
11. Radygina T.V., Petrichuk S.V., Kuptsova D.G., Kurbatova O.V., Fisenko A.P., Abdullaeva L.M., et al. The content of memory t-cells in children with immune-mediated inflammatory disease with varying effectiveness of biological therapy. Rossiiskiy pediatricheskiy zhurnal. 2025; 28(1): 23–32. https://doi.org/10.46563/1560-9561-2025-28-1-23-32 https://elibrary.ru/tcnxvr (in Russian)
12. Petrichuk S.V., Kurbatova O.V., Kuptsova D.G., Radygina T.V., Freidlin E.V. Metabolism of lymphocyte populations in healthy children and patients with immune-dependent diseases. Allergologiya i immunologiya v pediatrii. 2023; (2): 50–3. https://doi.org/10.53529/2500-1175-2023-2-50-53 https://elibrary.ru/iuthlg (in Russian)
13. Kurbatova O.V., Radygina T.V., Kuptsova D.G., Petrichuk S.V., Movsisyan G.B., Potapov A.S., et al. Coordination of the NF-κB signaling pathway and lymphocyte metabolism in children with autoimmune diseases. Rossiiskiy immunologicheskiy zhurnal. 2023; 26(4): 491–500. https://doi.org/10.46235/1028-7221-13800-COT https://elibrary.ru/zrvlew (in Russian)
14. Cattalini M., Maduskuie V., Fawcett P.T., Brescia A.M., Rosé C.D. Predicting duration of beneficial effect of joint injection among children with chronic arthritis by measuring biomarkers concentration in synovial fluid at the time of injection. Clin. Exp. Rheumatol. 2008; 26(6): 1153–60.
15. Kurbatova O.V., Kuptsova D.G., Zakirov R.Sh., Radygina T.V., Movsisyan G.B., Freidlin E.V., et al. Prospects for studying immunometabolism in clinical practice. Vestnik Tashkentskoy meditsinskoy akademii. 2023; 3(1): 98–104. (in Russian)
16. Luchinin A.S. Prognostic models in medicine. Klinicheskaya onkogematologiya. 2023; 16(1): 27–36. https://doi.org/10.21320/2500-2139-2023-16-1-27-36 https://elibrary.ru/uzeqzu (in Russian)
17. Conrad N., Misra S., Verbakel J.Y., Verbeke G., Molenberghs G., Taylor P.N., et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet. 2023; 401(10391): 1878–90. https://doi.org/10.1016/S0140-6736(23)00457-9
18. Boynova I.V., Samarina D.V., Katorova A.V., Tokareva N.G. Clinical and epidemiological features of multiple sclerosis in the Russian Federation. Sovremennye problemy nauki i obrazovaniya. 2022; (5): 1–11. https://doi.org/10.17513/spno.32006 https://elibrary.ru/rxkcde (in Russian)
19. Yablokova E.A., Gorelov A.V., Sichinava I.V., Borisova E.V., Polotnyanko E.Y., Grammatopulo M.I., et al. For extraintestinal manifestations of INFL ammatory bowel disease in children. Eksperimental’naya i klinicheskaya gastroenterologiya. 2016; (8): 62–6. https://elibrary.ru/wxqeqx (in Russian)
20. Zhukova O.V., Kasikhina E.I. Epidemiological aspects of psoriasis in children. Klinicheskaya dermatologiya i venerologiya. 2018; 17(5): 24–9. https://doi.org/10.17116/klinderma201817051 https://elibrary.ru/yqhjoh (in Russian)
21. de Souza H.S., Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol Hepatol. 2016; 13(1): 13–27. https://doi.org/10.1038/nrgastro.2015.186.
22. Chiricozzi A., Romanelli P., Volpe E., Borsellino G., Romanelli M. Scanning the immunopathogenesis of psoriasis. Int. J. Mol. Sci. 2018; 19(1): 179. https://doi.org/10.3390/ijms19010179
23. Conrad C., Gilliet M. Psoriasis: from pathogenesis to targeted therapies. Clin. Rev. Allergy Immunol. 2018; 54(1): 102–13. https://doi.org/10.1007/s12016-018-8668-1
24. Dulic S., Toldi G., Sava F., Kovács L., Molnár T., Milassin Á., et al. Specific T-cell subsets can predict the efficacy of anti-TNF treatment in inflammatory bowel diseases. Arch. Immunol. Ther. Exp. (Warsz). 2020; 68(2): 12. https://doi.org/10.1007/s00005-020-00575-5
25. Georgescu S.R., Tampa M., Caruntu C., Sarbu M.I., Mitran C.I., Mitran M.I., et al. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci. 2019; 20(3): 739. https://doi.org/10.3390/ijms20030739
26. Jamshidian A., Shaygannejad V., Pourazar A., Zarkesh-Esfahani S.H., Gharagozloo M. Biased Treg/Th17 balance away from regulatory toward inflammatory phenotype in relapsed multiple sclerosis and its correlation with severity of symptoms. J. Neuroimmunol. 2013; 262(1-2): 106–12. https://doi.org/10.1016/j.jneuroim.2013.06.007
27. Hu H., Li H., Li R., Liu P., Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J. Transl. Med. 2024; 22(1): 663. https://doi.org/10.1186/s12967-024-05450-x
28. Zhang S., Gang X., Yang S., Cui M., Sun L., Li Z., et al. The alterations in and the role of the Th17/Treg balance in metabolic diseases. Front. Immunol. 2021; 12: 678355. https://doi.org/10.3389/fimmu.2021.678355
29. Tomaszewicz M., Ronowska A., Zieliński M., Jankowska-Kulawy A., Trzonkowski P. T regulatory cells metabolism: The influence on functional properties and treatment potential. Front. Immunol. 2023; 14: 1122063. https://doi.org/10.3389/fimmu.2023.1122063
30. Shyer J.A., Flavell R.A., Bailis W. Metabolic signaling in T cells. Cell Res. 2020; 30(8): 649–59. https://doi.org/10.1038/s41422-020-0379-5
31. Pålsson-McDermott E.M., O’Neill L.A.J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020; 30(4): 300–14. https://doi.org/10.1038/s41422-020-0291-z
32. Yang W., Yu T., Cong Y. CD4+ T cell metabolism, gut microbiota, and autoimmune diseases: implication in precision medicine of autoimmune diseases. Precis. Clin. Med. 2022; 5(3): pbac018. https://doi.org/10.1093/pcmedi/pbac018
33. Vuerich M., Harshe R.P., Robson S.C., Longhi M.S. Dysregulation of adenosinergic signaling in systemic and organ-specific autoimmunity. Int. J. Mol. Sci. 2019; 20(3): 528. https://doi.org/10.3390/ijms20030528
34. Zeng J., Ning Z., Wang Y., Xiong H. Implications of CD39 in immune-related diseases. Int. Immunopharmacol. 2020; 89(Pt. A): 107055. https://doi.org/10.1016/j.intimp.2020.107055
35. Di Virgilio F., Sarti A.C., Coutinho-Silva R. Purinergic signaling, DAMPs, and inflammation. Am. J. Physiol. Cell Physiol. 2020; 318(5): C832–5. https://doi.org/10.1152/ajpcell.00053.2020
36. Millrud C.R., Bergenfelz C., Leandersson K. On the origin of myeloid-derived suppressor cells. Oncotarget. 2017; 8(2): 3649–65. https://doi.org/10.18632/oncotarget.12278
37. Xu D., Li C., Xu Y., Huang M., Cui D., Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front. Immunol. 2022; 13: 1021612. https://doi.org/10.3389/fimmu.2022.1021612
38. Sadeghi M., Dehnavi S., Sharifat M., Amiri A.M., Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon. 2024; 10(5): e27480. https://doi.org/10.1016/j.heliyon.2024.e27480
39. Raphael I., Joern R.R., Forsthuber T.G. Memory CD4+ T cells in immunity and autoimmune diseases. Cells. 2020; 9(3): 531. https://doi.org/10.3390/cells9030531
40. van Gisbergen K.P.J.M., Zens K.D., Münz C. T-cell memory in tissues. Eur. J. Immunol. 2021; 51(6): 1310–24. https://doi.org/10.1002/eji.202049062
41. Zaidi D., Wine E. Regulation of nuclear factor Kappa-Light-Chain-Enhancer of activated B cells (NF-κβ) in inflammatory bowel diseases. Front. Pediatr. 2018; 6: 317. https://doi.org/10.3389/fped.2018.00317
42. Uttarkar S., Brembilla N.C., Boehncke W.H. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J. Allergy Clin. Immunol. 2019; 143(4): 1302–10. https://doi.org/10.1016/j.jaci.2018.12.1011
43. Guo Q., Jin Y., Chen X., Ye X., Shen X., Lin M., et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target Ther. 2024; 9(1): 53. https://doi.org/10.1038/s41392-024-01757-9
44. Marsal J., Barreiro-de Acosta M., Blumenstein I., Cappello M., Bazin T., Sebastian S. Management of non-response and loss of response to anti-tumor necrosis factor therapy in inflammatory bowel disease. Front. Med. (Lausanne). 2022; 9: 897936. https://doi.org/10.3389/fmed.2022.897936
45. Privitera G., Pugliese D., Rapaccini G.L., Gasbarrini A., Armuzzi A., Guidi L. Predictors and early markers of response to biological therapies in inflammatory bowel diseases. J. Clin. Med. 2021; 10(4): 853. https://doi.org/10.3390/jcm10040853
46. Brescia C., Audia S., Pugliano A., Scaglione F., Iuliano R., Trapasso F., et al. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS. 2024; 132(12): 1026–45. https://doi.org/10.1111/apm.13378.
47. Cerboni S., Gehrmann U., Preite S., Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology. 2021; 163(1): 3–18. https://doi.org/10.1111/imm.13280
48. Quirant-Sánchez B., Presas-Rodriguez S., Mansilla M.J., Teniente-Serra A., Hervás-García J.V., Brieva L., et al. Th1Th17CM lymphocyte subpopulation as a predictive biomarker of disease activity in multiple sclerosis patients under dimethyl fumarate or fingolimod treatment. Mediators Inflamm. 2019; 2019: 8147803. https://doi.org/10.1155/2019/8147803
Review
For citations:
Radygina T.V., Petrichuk S.V., Fisenko A.P., Kuptsova D.G., Kurbatova O.V., Anushenko A.O., Opryatin L.A., Abdullaeva L.M., Freydlin E.V., Potapov A.S., Murashkin N.N., Kuzenkova L.M. Algorithm for immunological examination of children with immune-dependent diseases to predict the effectiveness of biological therapy. Russian Pediatric Journal. 2025;28(6):408-419. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-6-408-419. EDN: yymyqa
JATS XML





















