Preview

Российский педиатрический журнал

Расширенный поиск

Особенности определения диффузионной способности лёгких по монооксиду углерода при муковисцидозе у детей

https://doi.org/10.46563/1560-9561-2022-25-5-350-356

EDN: eybiha

Аннотация

В обзоре представлены современные данные о применении анализа диффузионной способности лёгких по монооксиду углерода у детей с муковисцидозом (МВ). Представлены характеристики теста диффузионной способности лёгких у детей и взрослых с различными формами патологии, а также описаны противоречивые данные использования этого теста у больных МВ разного возраста. Обсуждается целесообразность применения анализа диффузионной способности лёгких по монооксиду углерода у больных МВ, его информативность, трудности проведения теста у детей и сложности оценки данных в зависимости от течения заболевания. Автор рекомендует шире использовать в клинической диагностике МВ такие показатели, как трансфер-фактор, альвеолярный объём и их соотношение, определяемые при тесте диффузионной способности лёгких по монооксиду углерода, у больных МВ.

Финансирование. Исследование не имело финансовой поддержки.

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Поступила 24.08.2022
Принята к печати 20.09.2022
Опубликована 31.10.2022

Об авторе

Серафима Григорьевна Быстрова
ФГАОУ ВО «Первый медицинский государственный медицинский университет им. И.М. Сеченова» (Сеченовский университет); ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России
Россия

Аспирант каф. педиатрии и детской ревматологии КИДЗ им. Н.Ф. Филатова ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский университет); лаборант лаб. редких наследственных болезней у детей ФГАУ «НМИЦ здоровья детей» Минздрава России.

e-mail: cerafima.bystrova@yandex.ru



Список литературы

1. Stanton B.F. Cystic fibrosis. Pediatr. Clin. North Am. 2016; 63(4): xv. https://doi.org/10.1016/j.pcl.2016.06.002

2. Cheney J., Vidmar S., Gailer N., Wainwright C., Douglas T.A. Health-related quality-of-life in children with cystic fibrosis aged 5-years and associations with health outcomes. J. Cyst. Fibros. 2020; 19(3): 483-91. https://doi.org/10.1016/j.jcf.2020.02.022

3. Wilk M.A., Braun A.T., Farrell P.M., Laxova A., Brown D.M., Holt J.M., et al. Applying whole-genome sequencing in relation to phenotype and outcomes in siblings with cystic fibrosis. Cold Spring Harb. Mol. Case. Stud. 2020; 6(1): 004531. https://doi.org/10.1101/mcs.a004531

4. Lahiri T., Hempstead S.E., Brady C., Cannon C.L., Clark K., Condren M.E., et al. Clinical practice guidelines from the cystic fibrosis foundation for preschoolers with cystic fibrosis. Pediatrics. 2016; 137(4): e20151784. https://doi.org/10.1542/peds.2015-1784

5. Кондратьева Е.И., Красовский С.А., Старинова М.А., Воронкова А.Ю., Амелина Е.Л., Каширская Н.Ю. и др. Регистр пациентов с муковисцидозом в Российской Федерации - 2020 год. М.: Медпрактика-М; 2022.

6. Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021; 31(2): 226-36. https://doi.org/10.18093/0869-0189-2021-31-2-226-236

7. Earnest A., Salimi F., Wainwright C.E., Bell S.C., Ruseckaite R., Ranger T., et al. Lung function over the life course of paediatric and adult patients with cystic fibrosis from a large multi-centre registry. Sci. Rep. 2020; 10(1): 17421. https://doi.org/10.1038/s41598-020-74502-1

8. Фурман Е.Г., Кондратьева Е.И., Черняк А.В., Шадрина В.В. Возрастные особенности оценки функции внешнего дыхания у детей c муковисцидозом моложе 6 лет. Пульмонология. 2019; 29(6): 739-44. https://doi.org/10.18093/0869-0189-2019-29-6-739-744

9. Павлинова Е.Б., Сафонова Т.И., Киршина И.А., Мингаирова А.Г., Власенко Н.Ю., Полянская Н.А. Возможности компьютерной бронхофонографии в диагностике нарушений функции внешнего дыхания у больных муковисцидозом. Российский вестник перинатологии и педиатрии. 2016; 61(5): 52-6. https://doi.org/10.21508/1027-4065-2016-61-5-52-56

10. Radtke T., Böni L., Bohnacker P., Maggi-Beba M., Fischer P., Kriemler S., et al. Acute effects of combined exercise and oscillatory positive expiratory pressure therapy on sputum properties and lung diffusing capacity in cystic fibrosis: a randomized, controlled, crossover trial. BMC Pulm. Med. 2018; 18(1): 99. https://doi.org/10.1186/s12890-018-0661-1

11. Merkus P.J., Govaere E.S., Hop W.H., Stam H., Tiddens H.A., de Jongste J.C. Preserved diffusion capacity in children with cystic fibrosis. Pediatr. Pulmonol. 2004; 37(1): 56-60. https://doi.org/10.1002/ppul.10357

12. Vilozni D., Dagan A., Sarouk I., Bar-Aluma B.E., Ashkenazi M., Bezalel Y., et al. Advanced lung disease in patients with cystic fibrosis is associated with low diffusion capacity. Isr. Med. Assoc. J. 2020; 22(12): 770-4.

13. Graham B.L., Brusasco V., Burgos F. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49: 1600016. https://doi.org/10.1183/13993003.00016-2016

14. Wanger J., Clausen J.L., Coates A., Pedersen O.F., Brusasco V., Burgos F., et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26(3): 511-22. https://doi.org/10.1183/09031936.05.00035005

15. Bokov P., Delclaux C.Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test. Rev. Med.Interne. 2016; 37(2): 100-10. https://doi.org/10.1016/j.revmed.2015.10.356 (in French)

16. Roughton F.J., Forster R.E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 1957; 11(2): 290-302. https://doi.org/10.1152/jappl.1957.11.2.290

17. Ogilvie C., Forster R., Blakemore W., Morton J.W. A standardized breath-holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957; 36(1 Pt. 1): 1-17. https://doi.org/10.1172/jci103402

18. Macintyre N., Crapo R.O., Viegi G., Johnson D.C., van der Grinten C.P.M., Brusasco V., et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005; 26(4): 720-35. https://doi.org/10.1183/09031936.05.00034905

19. Salvador-Ong R., Dijkers E., van Steenwijk R., Sterk P. Single-breath diffusion: comparison between helium and methane as tracer gases in COPD and healthy controls. Eur. Respir. J. 2014; 44: 1271.

20. von Westernhagen F., Smidt U. The significance of the difference between slow inspiratory and forced expiratory vital capacity. Lung. 1978; 154(4): 289-97. https://doi.org/10.1007/bf02713545

21. Zavorsky G.S., Wilson B., Harris J.K., Kim D.J., Carli F., Mayo N.E. Pulmonary diffusion and aerobic capacity: is there a relation? Does obesity matter? Acta Physiol. (Oxf.). 2010; 198(4): 499-507. https://doi.org/10.1111/j.1748-1716.2009.02059.x

22. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94(1): 28-37. https://doi.org/10.1053/rmed.1999.0740

23. Hughes J.M., Pride N.B. Examination of the carbon monoxide diffusing capacity (DL(CO)) in relation to its KCO and VA components. Am. J. Respir. Crit. Care Med. 2012; 186(2): 132-9. https://doi.org/10.1164/rccm.201112-2160CI

24. Измерение диффузионной способности легких по монооксиду углерода методом одиночного вдоха: стандарты Американского торакального и Европейского респираторного обществ (часть 2-я). Пульмонология. 2019; 29(3): 269-91. https://doi.org/10.18093/0869-0189-2019-29-3-269-291

25. Ring A.M., Carlens J., Bush A., Castillo-Corullón S., Fasola S., Gaboli M.P., et al. Pulmonary function testing in children’s interstitial lung disease. Eur. Respir. Rev. 2020; 29(157): 200019. https://doi.org/10.1183/16000617.0019-2020

26. Fitzgerald N.M., Fitzgerald D.A., Lands L., Selvadurai H. Diffusion capacity in children: what happens with exercise? Paediatr. Respir. Rev. 2013; 14(3): 190-4. https://doi.org/10.1016/j.prrv.2012.08.005

27. Degano B., Perrin F., Soumagne T., Agard C., Chambellan A. Pulmonary CO/NO transfer: physiological basis, technical aspects and clinical impact. Rev. Med.Interne. 2014; 35(5): 322-7. https://doi.org/10.1016/j.revmed.2013.11.001

28. Moscato U., Poscia A., Gargaruti R., Capelli G., Cavaliere F. Normal values of exhaled carbon monoxide in healthy subjects: comparison between two methods of assessment. BMC Pulm. Med. 2014; 14: 204. https://doi.org/10.1186/1471-2466-14-204

29. Chemery L., Fekete K., Guillot S., Roussey M., Desrues B., Dabadie A., et al. Diffusing capacity for carbon monoxide (T(LCO)) and oxygen saturation during exercise in patients with cystic fibrosis. Arch. Pediatr. 2004; 11(9): 1060-6. https://doi.org/10.1016/j.arcped.2004.04.019

30. Yang J., Stanton J., Wang L., Beckert L., Frampton C., Burton D., et al. Effect of salbutamol on the measurement of single-breath diffusing capacity. Respirology. 2013; 18(8): 1223-9. https://doi.org/10.1111/resp.12125

31. Pedreira C.C., Robert R.G., Dalton V., Oliver M.R., Carlin J.B., Robinson P., et al. Association of body composition and lung function in children with cystic fibrosis. Pediatr. Pulmonol. 2005; 39(3): 276-80. https://doi.org/10.1002/ppul.20162

32. Ding S., Zhong C. Exercise and cystic fibrosis. Adv. Exp. Med. Biol. 2020; 1228: 381-91. https://doi.org/10.1007/978-981-15-1792-1_26

33. Dressel H., Filser L., Fischer R., Marten K., Müller-Lisse U., de la Motte D., et al. Lung diffusing capacity for nitric oxide and carbon monoxide in relation to morphological changes as assessed by computed tomography in patients with cystic fibrosis. BMC Pulm. Med. 2009; 9: 30. https://doi.org/10.1186/1471-2466-9-30

34. Salcedo-Posadas A., Villa-Asensi J.R., de Mir Messa I., Sardon-Prado O., Larramona H. Measurement of CO diffusion capacity (II): Standardisation and quality criteria. Anales de Pediatría (English Ed.). 2015; 83(2): 1-7. https://doi.org/10.1016/j.anpede.2015.06.012

35. Lacerda L.S., Lopes A.J., Carvalho A.R.S., Guimarães A.R.M., Firmida M.C., Castro M.C.S., et al. The role of multidetector computed tomography and the forced oscillation technique in assessing lung damage in adults with cystic fibrosis. Respir. Care. 2018; 63(4): 430-40. https://doi.org/10.4187/respcare.05815

36. Hughes J.M., van der Lee I. The TL,NO/TL,CO ratio in pulmonary function test interpretation. Eur. Respir. J. 2013; 41(2): 453-61. https://doi.org/10.1183/09031936.00082112

37. Guillot S., Beillot J., Meunier C., Dassonville J.Interpreting carbon monoxide transfer coefficient: significance and difficulties. Rev. Mal. Respir. 2005; 22(5 Pt. 1): 759-66. https://doi.org/10.1016/s0761-8425(05)85633-5

38. Koopman M., Zanen P., Kruitwagen C.L.J.J., van der Ent C.K., Arets H.G.M. Reference values for paediatric pulmonary function testing: The Utrecht dataset. Respir. Med. 2011; 105(1): 15-23. https://doi.org/10.1016/j.rmed.2010.07.020

39. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94(1): 28-37. https://doi.org/10.1053/rmed.1999.0740

40. Shimizu K., Konno S., Makita H., Kimura H., Kimura H., Suzuki M., et al. Transfer coefficients better reflect emphysematous changes than carbon monoxide diffusing capacity in obstructive lung diseases. J. Appl. Physiol. (1985). 2018; 125(1): 183-9. https://doi.org/10.1152/japplphysiol.01062.2018

41. Rocamora-Pérez P., Benzo-Iglesias M.J., Valverde-Martínez M.L.Á., García-Luengo V., AguilarParra J.M., Trigueros R., et al. Effectiveness of positive expiratory pressure on patients over 16 years of age with cystic fibrosis: systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2022; 16: 17534666221089467. https://doi.org/10.1177/17534666221089467

42. Piacentini G.L., Tezza G., Cattazzo E., Kantar A., Ragazzo V., Boner A.L., et al. Diffusion lung capacity of carbon monoxide: A novel marker of airways remodeling in asthmatic children? Allergy Rhinol. (Providence). 2012; 3(2): 66-73. https://doi.org/10.2500/ar.2012.3.0033

43. Mondal P., Yirinec A., Midya V., Sankoorikal B.J., Smink G., Khokhar A., et al. Diagnostic value of spirometry vs impulse oscillometry: A comparative study in children with sickle cell disease. Pediatr. Pulmonol. 2019; 54(9): 1422-30. https://doi.org/10.1002/ppul.24382

44. Mondal P., Midya V., Khokhar A., Sathianathan S., Forno E. Predictors of diffusing capacity in children with sickle cell disease: a longitudinal study. Front. Pediatr. 2021; 9: 678174. https://doi.org/10.3389/fped.2021.678174

45. Satrell E., Clemm H., Røksund O.R., Hufthammer K.O., Thorsen E., Halvorsen T., et al. Development of lung diffusion to adulthood following extremely preterm birth. Eur. Respir. J. 2022; 59(5): 2004103. https://doi.org/10.1183/13993003.04103-2020

46. Villa M.P., Montesano M., Barreto M. Diffusing capacity for carbon monoxide in children with type 1 diabetes. Diabetologiya. 2004; 47(11): 1931-5. https://doi.org/10.1007/s00125-004-1548-7

47. Mirić M., Turkalj M., Nogalo B., Erceg D., Perica M., Plavec D. Lung diffusion capacity in children with respiratory symptoms and untreated GERD. Med. Sci. Monit. 2014; 20: 774-81. https://doi.org/10.12659/MSM.890336

48. Hildebrandt J., Rahn A., Kessler A. Lung clearance index and diffusion capacity for CO to detect early functional pulmonary impairment in children with rheumatic diseases. Pediatr. Rheumatol. 2021; 19(1): 23. https://doi.org/10.1186/s12969-021-00509-1

49. Attanasi M., Lucantoni M., Rapino D., Petrosino M.I., Marsili M., Gasparroni G., et al. Lung function in children with juvenile idiopathic arthritis: a cross-sectional analysis. Pediatr. Pulmonol. 2019; 54(8): 1242-9.

50. Fretzayas A., Loukou I., Moustaki M., Douros K. Correlation of computed tomography findings and lung function in children and adolescents with cystic fibrosis. World J. Pediatr. 2021; 17(3): 221-6. https://doi.org/10.1007/s12519-020-00388-8

51. Espiritu J.D., Ruppel G., Shrestha Y., Kleinhenz M.E. The diffusing capacity in adult cystic fibrosis. Respir. Med. 2003; 97(6): 606-11. https://doi.org/10.1053/rmed.2003.1487

52. Черняк А.В., Красовский С.А., Науменко Ж.К., Карчевская Н.А., Тарабрин Е.А., Неклюдова Г.В. и др. Динамика показателей функции внешнего дыхания у больных муковисцидозом после трансплантации легких. Пульмонология. 2017; 27(2): 206-15. https://doi.org/10.18093/0869-0189-2017-27-2-206-215

53. Ramos K.J., Smith P.J., McKone E.F., Pilewski J.M., Lucy A., Hempstead S.E., et al. Lung transplant referral for individuals with cystic fibrosis: Cystic Fibrosis Foundation consensus guidelines. J. Cyst. Fibros. 2019; 18(3): 321-33. https://doi.org/10.1016/j.jcf.2019.03.002

54. Leard L.E., Holm A.M., Valapour M., Glanville A.R., Attawar S., Aversa M., et al. Consensus document for the selection of lung transplant candidates: An update from the International Society for Heart and Lung Transplantation. J. Heart Lung. Transplant. 2021; 40(11): 1349-79. https://doi.org/10.1016/j.healun.2021.07.005

55. Alves C., Della-Manna T., Albuquerque C.T.M. Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment. J. Pediatr. Endocrinol. Metab. 2020; 33(7): 835-43. https://doi.org/10.1515/jpem-2019-0484

56. Prentice B.J., Jaffe A., Hameed S., Verge C.F., Waters S., Widger J. Cystic fibrosis-related diabetes and lung disease: an update. Eur. Respir. Rev. 2021; 30(159): 200293. https://doi.org/10.1183/16000617.0293-2020

57. Неклюдова Г.В., Черняк А.В. Диагностические возможности исследования диффузионной способности легких. Медицинский алфавит. 2020; (25): 22-5. https://doi.org/10.33667/2078-5631-2020-25-22-25

58. Wheatley C.M., Foxx-Lupo W.T., Cassuto N.A., Wong E.C., Daines C.L., Morgan W.J., et al. Impaired lung diffusing capacity for nitric oxide and alveolar-capillary membrane conductance results in oxygen desaturation during exercise in patients with cystic fibrosis. J. Cyst. Fibros. 2011; 10(1): 45-53. https://doi.org/10.1016/j.jcf.2010.09.006

59. Wagener J.S., VanDevanter D.R., Konstan M.W., Pasta D.J., Millar S.J., Morgan W.J. Lung function changes before and after pulmonary exacerbation antimicrobial treatment in cystic fibrosis. Pediatr. Pulmonol. 2020; 55(3): 828-34. https://doi.org/10.1002/ppul.24577

60. Bartley B.L., Schwartz C.E., Stark R.B., Georgiopoulos A.M., Friedman D., Richards C.J., et al. Lung transplant referral practice patterns: a survey of cystic fibrosis physicians and general pulmonologists. BMC Pulm. Med. 2020; 20(1): 58. https://doi.org/10.1186/s12890-020-1067-4


Рецензия

Для цитирования:


Быстрова С.Г. Особенности определения диффузионной способности лёгких по монооксиду углерода при муковисцидозе у детей. Российский педиатрический журнал. 2022;25(5):350-356. https://doi.org/10.46563/1560-9561-2022-25-5-350-356. EDN: eybiha

For citation:


Bystrova S.G. Features of determining the diffusion capacity of the lungs by carbon monoxide in cystic fibrosis children. Russian Pediatric Journal. 2022;25(5):350-356. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-5-350-356. EDN: eybiha

Просмотров: 80


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)