Features of pubertal development of adolescent girls with cystic fibrosis
https://doi.org/10.46563/1560-9561-2022-25-4-230-235
EDN: lcgetg
Abstract
This review is devoted to an urgent and insufficiently studied problem — the characteristics of the pubertal development of girls with cystic fibrosis (CF), the deviations in the period of menarche, the stages of the puberty, anatomical and physiological features of the female reproductive system in this monogenic disease. The increase in life expectancy, as well as the spread and increasing availability of targeted therapies, highlight the need for further research on this topic. Early diagnosis of disorders of pubertal development due to timely prescribed therapy (hormonal) allows not only correcting the timing of the onset of menarche in CF adolescent girls, but also increasing the chances of conceiving and bearing a child.
Contribution:
Goryainova A.V., Karachentsova I.V., Sibirskaya E.V., Sharkov S.M. — research concept and design of the study;
Goryainova A.V., Golubkova V.M., Bondarenko O.V., Karachentsova I.V. — collection and processing of material;
Goryainova A.V., Golubkova V.M., Bondarenko O.V., Karachentsova I.V. — text writing;
Bondarenko O.V., Golubkova V.M., Karachentsova I.V. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: June 16, 2022
Accepted: June 29, 2022
Published: 30 August, 2022
About the Authors
Anastasia V. GoryainovaRussian Federation
Irina V. Karachentsova
Russian Federation
MD, PhD, Associate Professor of the Department of Obstetrics and Gynecology, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 119571, Moscow, Russian Federation; obstetrician-gynecologist of the surgical gynecological department of Russian Children’s Clinical Hospital, Pirogov Russian National Research Medical University, 119571, Moscow, Russian Federation.
e-mail: 5053104@list.ru
Elena V. Sibirskaya
Russian Federation
Sergey M. Sharkov
Russian Federation
Varvara M. Golubkova
Russian Federation
Olesya V. Bondarenko
Russian Federation
References
1. Kashirskaya N.Yu., Kondrat’eva E.I., Krasovskiy S.A., Starinova M.A., Voronkova A.Yu., Amelina E.L., et al. Register of Patients with Cystic Fibrosis in the Russian Federation – 2019 [Registr bol’nykh mukovistsidozom v Rossiyskoy Federatsii – 2019 god]. Moscow: ID Medpraktika-M; 2021. (in Russian)
2. Cystic Fibrosis Foundation. Patient Registry Annual Data Report – 2019. Available at: https://www.cff.org/sites/default/files/2021-10/2019-Patient-Registry-Annual-Data-Report.pdf
3. Rousset-Jablonski C., Reynaud Q., Nove-Josserand R., Durupt S., Durieu I. Gynecological management and follow-up in women with cystic fibrosis. Rev. Mal. Respir. 2018; 35(6): 592–603. https://doi.org/10.1016/j.rmr.2017.08.004
4. Kazmerski T.M., Prushinskaya O.V., Hill K., Nelson E., Leonard J., Mogren K., et al. Sexual and reproductive health of young women with cystic fibrosis: a concept mapping study.
5. Acad. Pediatr. 2019; 19(3): 307–14. https://doi.org/10.1016/j.acap.2018.08.011
6. Arjmand B., Larijani B., Sheikh Hosseini M., Payab M., Gilany K., Goodarzi P., et al. The horizon of gene therapy in modern medicine: advances and challenges. Adv. Exp. Med. Biol. 2020; 1247: 33–64. https://doi.org/10.1007/5584_2019_463
7. Kushary S., Ali N., Spencer J.B., Dokson J., Hunt W.R. Assessment of a novel genetic counselling intervention to inform assisted reproductive technology treatments and other family-building options in adults with cystic fibrosis. Reprod. Biomed. Soc. Online. 2021; 13: 37–45. https://doi.org/10.1016/j.rbms.2021.05.001
8. Goetz D.M., Savant A.P. Review of CFTR modulators 2020. Pediatr. Pulmonol. 2021; 56(12): 3595–606. https://doi.org/10.1002/ppul.25627
9. Shteinberg M., Taylor-Cousar J.L., Durieu I., Cohen-Cymberknoh M. Fertility and pregnancy in cystic fibrosis. Chest. 2021; 160(6): 2051–60. https://doi.org/10.1016/j.chest.2021.07.024
10. Wang X.F., Zhou C.X., Shi Q.X., Yuan Y.Y., Yu M.K., Ajonuma L.C., et al. Involvement of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Nat. Cell Biol. 2003; 5(10): 902–6. https://doi.org/10.1038/ncb1047
11. Ahmad A., Ahmed A., Patrizio P. Cystic fibrosis and fertility. Curr. Opin. Obstet. Gynecol. 2013; 25(3): 167–72. https://doi.org/10.1097/GCO.0b013e32835f1745
12. Chan H.C., Shi Q.X., Zhou C.X., Wang X.F., Xu W.M., Chen W.Y., et al. Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Mol. Cell. Endocrinol. 2006; 250(1-2): 106–13. https://doi.org/10.1016/j.mce.2005.12.032
13. Xu W.M., Shi Q.X., Chen W.Y., Zhou C.X., Ni Y., Rowlands D.K., et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc. Natl Acad. Sci. USA. 2007; 104(23): 9816–21. https://doi.org/10.1073/pnas.0609253104
14. Rode B., Dirami T., Bakouh N., Rizk-Rabin M., Norez C., Lhuillier P., et al. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Hum. Mol. Genet. 2012; 21(6): 1287–98. https://doi.org/10.1093/hmg/ddr558
15. Weenen C., Laven J.S.E., Von Bergh A.R.M., Cranfield M., Groome N.P., Visser J.A., et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 2004; 10(2): 77–83. https://doi.org/10.1093/molehr/gah015
16. Dewailly D., Robin G., Peigne M., Decanter C., Pigny P., Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update. 2016; 22(6): 709–24. https://doi.org/10.1093/humupd/dmw027
17. Bradley G.M., Blackman S.M., Watson C.P., Doshi V.K., Cutting G.R. Genetic modifiers of nutritional status in cystic fibrosis. Am. J. Clin. Nutr. 2012; 96(6):1299–308. https://doi.org/10.3945/ajcn.112.043406
18. Ratchford T.L., Teckman J.H., Patel D.R. Gastrointestinal pathophysiology and nutrition in cystic fibrosis. Expert Rev. Gastroenterol. Hepatol. 2018; 12(9): 853–62. https://doi.org/10.1080/17474124.2018.1502663
19. Mauch R.M., Kmit A.H., Marson F.A., Levy C.E., Barros-Filho A.A., Ribeiro J.D. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review. Rev. Paul. Pediatr. 2016; 34(4): 503–9. https://doi.org/10.1016/j.rpped.2015.12.002
20. Dos Santos A.L.M., de Melo Santos H., Nogueira M.B., Távora H.T.O., de Lourdes Jaborandy Paim da Cunha M., de Melo Seixas R.B.P., et al. Cystic fibrosis: clinical phenotypes in children and adolescents. Pediatr. Gastroenterol. Hepatol. Nutr. 2018; 21(4): 306–14. https://doi.org/10.5223/pghn.2018.21.4.306
21. Connett G.J., Pike K.C. Nutritional outcomes in cystic fibrosis – are we doing enough? Paediatr. Respir. Rev. 2015; 16(Suppl. 1): 31–4. https://doi.org/10.1016/j.prrv.2015.07.015
22. Goryainova A.V., Polikarpova S.V., Semykin S.Yu., Kashirskaya N.Yu., Mikhalaki P.I. Tobramycin activity for Pseudomonas Aeruginosa spp. isolated in cystic fibrosis patients. Doktor.Ru. 2021; 20(3): 17–23. https://doi.org/10.31550/1727-2378-2021-20-3-17-23 (in Russian)
23. Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(3): 50–3. (in Russian)
24. Smirnov I.E., Tarasova O.V., Lukina O.F., Kustova O.V., Sorokina T.E., Simonova O.I. Structural and functional state of the lungs in cystic fibrosis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(2): 11–7. (in Russian)
25. Smirnov I.E., Kucherenko A.G., Egorov M.S., Smirnova G.I., Urtnasan Ts., Simonova O.I., et al. Matrix metalloproteinases in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(3): 145–51. https://doi.org/10.18821/1560-9561-2018-21-3-145-151 (in Russian)
26. Neinstein L.S., Stewart D., Wang C.I., Johnson I. Menstrual dysfunction in cystic fibrosis. J Adolesc. Health Care. 1983; 4(3): 153–7. https://doi.org/10.1016/s0197-0070(83)80367-2
27. Schulze K.J., O’Brien K.O., Germain-Lee E.L., Booth S.L., Leonard A., Rosenstein B.J. Calcium kinetics are altered in clinically stable girls with cystic fibrosis. J. Clin. Endocrinol. Metab. 2004; 89(7): 3385–91. https://doi.org/10.1210/jc.2003-031879
28. Umławska W., Sands D., Zielińska A. Age of menarche in girls with cystic fibrosis. Folia Histochem. Cytobiol. 2010; 48(2): 185–90. https://doi.org/10.2478/v10042-010-0051-x
29. Gaudino R., Dal Ben S., Cavarzere P., Volpi S., Piona C., Boner A., et al. Delayed age at menarche in chronic respiratory diseases. Eur. J. Clin. Invest. 2021; 51(5): e13461. https://doi.org/10.1111/eci.13461
30. de Souza Dias Lopes P., Machado S.H., Lucena I.R.S., Marostica P.J.C. Ultrasound findings of pubertal development in girls with cystic fibrosis and their association with clinical outcomes and Tanner staging. Arch. Endocrinol. Metab. 2021; 65(5): 632–9. https://doi.org/10.20945/2359-3997000000404
31. Dal Ben S., Gaudino R., Cavarzere P., Volpi S., Antoniazzi F., Boner A., et al. Age at menarche in girls with cystic fibrosis and asthma. Minerva Endocrinol. (Torino). 2022. https://doi.org/10.23736/S2724-6507.21.03451-5
32. Hughan K.S., Daley T., Rayas M.S., Kelly A., Roe A. Female reproductive health in cystic fibrosis. J. Cyst. Fibros. 2019; 18(Suppl. 2): 95–104. https://doi.org/10.1016/j.jcf.2019.08.024
33. Heltshe S.L., Godfrey E.M., Josephy T., Aitken M.L., Taylor-Cousar J.L. Pregnancy among cystic fibrosis women in the era of CFTR modulators. J. Cyst. Fibros. 2017; 16(6): 687–94. https://doi.org/10.1016/j.jcf.2017.01.008
34. Braun C., Bacchetta J., Braillon P., Chapurlat R., Drai J., Reix P. Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: data from high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 2017; 28(11): 3179–88. https://doi.org/10.1007/s00198-017-4179-9
35. Edenborough F.P. Women with cystic fibrosis and their potential for reproduction. Thorax. 2001; 56(8): 649–55. https://doi.org/10.1136/thorax.56.8.649
36. Frayman K.B., Chin M., Sawyer S.M., Bell S.C. Sexual and reproductive health in cystic fibrosis. Curr. Opin. Pulm. Med. 2020; 26(6): 685–95. https://doi.org/10.1097/MCP.0000000000000731
37. Kazmerski T.M., Sawicki G.S., Miller E., Jones K.A., Abebe K.Z., Tuchman L.K., et al. Sexual and reproductive health behaviors and experiences reported by young women with cystic fibrosis. J. Cyst. Fibros. 2018; 17(1): 57–63. https://doi.org/10.1016/j.jcf.2017.07.017
38. Kazmerski T.M., Hill K., Prushinskaya O., Nelson E., Greenberg J., Pitts S.A., et al. Perspectives of adolescent girls with cystic fibrosis and parents on disease-specific sexual and reproductive health education. Pediatr. Pulmonol. 2018; 53(8): 1027–34. https://doi.org/10.1002/ppul.24015
39. Umławska W., Susanne C. Growth and nutritional status in children and adolescents with cystic fibrosis. Ann. Hum. Biol. 2008; 35(2): 145–53. https://doi.org/10.1080/03014460701824132
40. Sands D., Umławska W., Zielińska A. A cross-sectional study of growth, nutritional status and body proportions in children and adolescents at a medical center specializing in the treatment of cystic fibrosis in Poland. Arch. Med. Sci. 2015; 11(1): 155–63. https://doi.org/10.5114/aoms.2015.49207
41. Mędza A., Kaźmierska K., Wielgomas B., Konieczna L., Olędzka I., Szlagatys-Sidorkiewicz A., et al. DeltaF508 CFTR hetero- and homozygous paediatric patients with cystic fibrosis do not differ with regard to nutritional status. Nutrients. 2021; 13(5): 1402. https://doi.org/10.3390/nu13051402
42. Galli-Tsinopoulou A., Moudiou T., Mamopoulos A., Karamouzis M., Nousia-Arvanitakis S. Multifollicular ovaries in female adolescents with cystic fibrosis. Fertil. Steril. 2006; 85(5): 1484–7. https://doi.org/10.1016/j.fertnstert.2005.10.051
43. Kelestimur F., Unluhizarci K., Baybuga H., Atmaca H., Bayram F., Sahin Y. Prevalence of polycystic ovarian changes and polycystic ovary syndrome in premenopausal women with treated type 2 diabetes mellitus. Fertil. Steril. 2006; 86(2): 405–10. https://doi.org/10.1016/j.fertnstert.2006.01.019
44. Hassa H., Tanir H.M., Yildiz Z. Comparison of clinical and laboratory characteristics of cases with polycystic ovarian syndrome based on Rotterdam’s criteria and women whose only clinical signs are oligo/anovulation or hirsutism. Arch. Gynecol. Obstet. 2006; 274(4): 227–32. https://doi.org/10.1007/s00404-006-0173-8
45. Cirillo F., Catellani C., Sartori C., Lazzeroni P., Morini D., Nicoli A., et al. CFTR and FOXO1 gene expression are reduced and high mobility group box 1 (HMGB1) is increased in the ovaries and serum of women with polycystic ovarian syndrome. Gynecol. Endocrinol. 2019; 35(10): 842–6. https://doi.org/10.1080/09513590.2019.1599349
46. Wu M., Bettermann E.L., Arora N., Hunt W.R., McCracken C., Tangpricha V. Relationship between estrogen treatment and skeletal health in women with cystic fibrosis. Am. J. Med. Sci. 2020; 360(5): 581–90. https://doi.org/10.1016/j.amjms.2020.06.005
47. Garg V., Shen J., Li C., Agarwal S., Gebre A., Robertson S., et al. Pharmacokinetic and drug-drug interaction profiles of the combination of tezacaftor/ivacaftor. Clin. Transl. Sci. 2019; 12(3): 267–75. https://doi.org/10.1111/cts.12610
48. Roe A.H., Traxler S., Schreiber C.A. Contraception in women with cystic fibrosis: a systematic review of the literature. Contraception. 2016; 93(1): 3–10. https://doi.org/10.1016/j.contraception.2015.07.007
49. Roe A.H., Merjaneh L., Oxman R., Hughan K.S. Gynecologic health care for females with cystic fibrosis. J. Clin. Transl. Endocrinol. 2021; 26: 100277. https://doi.org/10.1016/j.jcte.2021.100277
50. Perrissin-Fabert M., Stheneur C., Veilleux-Lemieux M., Taddeo D., Marcotte J.E., Boutin A., et al. Hormonal Contraception Effects on Pulmonary Function in Adolescents with Cystic Fibrosis. J. Pediatr. Adolesc. Gynecol. 2020; 33(6): 681–5. https://doi.org/10.1016/j.jpag.2020.07.014
51. Haupt M.E., Kwasny M.J., Schechter M.S., McColley S.A. Pancreatic enzyme replacement therapy dosing and nutritional outcomes in children with cystic fibrosis. J. Pediatr. 2014; 164(5): 1110–5.e1. https://doi.org/10.1016/j.jpeds.2014.01.022
52. Khalaf R.T., Green D., Amankwah E.K., Peck J., Carr V., Goldenberg N.A., et al. Percutaneous endoscopic gastrostomy tubes may be associated with preservation of lung function in patients with cystic fibrosis. Nutr. Clin. Pract. 2019; 34(2): 290–6. https://doi.org/10.1002/ncp.10219
53. McDonald C.M., Bowser E.K., Farnham K., Alvarez J.A., Padula L., Rozga M. Dietary macronutrient distribution and nutrition outcomes in persons with cystic fibrosis: an evidence analysis center systematic review. J. Acad. Nutr. Diet. 2021; 121(8): 1574–90.e3. https://doi.org/10.1016/j.jand.2020.03.016
54. Shaikhkhalil A.K., Freeman A.J., Sathe M. Variations in nutrition practices in cystic fibrosis: a survey of the DIGEST Program. Nutr. Clin. Pract. 2021; 36(6): 1247–51. https://doi.org/10.1002/ncp.10605
Review
For citations:
Goryainova A.V., Karachentsova I.V., Sibirskaya E.V., Sharkov S.M., Golubkova V.M., Bondarenko O.V. Features of pubertal development of adolescent girls with cystic fibrosis. Russian Pediatric Journal. 2022;25(4):230-235. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-4-230-235. EDN: lcgetg