Preview

Russian Pediatric Journal

Advanced search

Hypertrophic cardiomyopathy in the structure of infiltrative diseases in children

https://doi.org/10.46563/1560-9561-2023-26-3-152-158

EDN: wvosnj

Abstract

Introduction. In 2006, the American Heart Association identified two main groups of cardiomyopathies (CM) as primary and secondary, referring to the primary CM heart diseases of genetic, acquired or mixed etiology, and to the secondary — pathological involvement of the myocardium as a part of a systemic pathology.

Aim: to determine the most common phenocopies of hypertrophic CM (HCM) in children, due to the accumulation of pathological substances in the myocardium and present their differences.

Materials and methods. Instrumental diagnostic methods (echocardiography, electrocardiography, 24-hour Holter ECG monitoring), laboratory tests (N-terminal propeptide of natriuretic hormone, creatine phosphokinase, creatine phosphokinase-MB, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, lactate, ammonia), and molecular genetic tests were used. 

Results. Nucleotide variants in non-sarcomeric genes causing myocardial hypertrophy were identified in one hundred four (39%) patients: infiltrative diseases with heart damage were diagnosed in 46 cases, syndromes from the RAS-pathy group were diagnosed in 58 cases. Patients with storage diseases included 12 children with Pompe disease, 2 cases with PRKAG2 syndrome, 11 cases had Danon disease, 15 — Corey–Forbes disease, and 6 — Friedreich ataxia. Adverse events were reported in group of patients with Pompe disease (9 deaths), and with Danon’s disease (2 deaths). 

Conclusion. The phenocopy varieties of HCM in children are represented by a wide variety of genetic variants and often by diseases from the group of glycogen metabolism disorders, fatty acid oxidation disorders, and mitochondrial diseases. Identification of the genetic causes of ventricular myocardial hypertrophy in children is the key to early diagnosis of rare diseases, timely and adequate treatment, as well as predicting the course and outcome of the disease.

Contribution:
Gandaeva L.A., Basargina E.N. — concept and design of the study;
Gandaeva L.A. — collection and processing of material, text writing;
Basargina E.N. — text editing;
Gandaeva L.A., Basargina E.N. — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: April 24, 2023
Accepted: May 16, 2023
Published: June 27, 2023

About the Authors

Leyla A. Gandaeva
National Medical Research Center for Children’s Health of the Russian Federation Ministry of Health
Russian Federation

MD, Cand. Sci. (Med.), senior researcher, cardiologist of National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation.

e-mail: dr.gandaeva@gmail.com



Elena N. Basargina
National Medical Research Center for Children’s Health of the Russian Federation Ministry of Health; Sechenov First Moscow State Medical University
Russian Federation


References

1. Lipshultz S.E., Law Y.M., Asante-Korang A., Austin E.D., Dipchand A.I., Everitt M.D., et al. Cardiomyopathy in children: Classification and diagnosis: A scientific statement from the American Heart Association. Circulation. 2019; 140(1): 9–68. https://doi.org/10.1161/CIR.0000000000000682

2. Maron B.J., Towbin J.A., Thiene G., Antzelevitch C., Corrado D., Arnett D., et al. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006; 113(14): 1807–16. https://doi.org/10.1161/circulationaha.106.174287

3. Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P., et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy. Circulation. 2020; 142(25): e558–631. https://doi.org/10.1161/CIR.0000000000000937

4. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014; 35(39): 2733–79. https://doi.org/10.1093/eurheartj/ehu284

5. Marston N.A., Han L., Olivotto I., Day S.M., Ashley E.A., Michels M., et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Heart J. 2021; 42(20): 1988–96. https://doi.org/10.1093/eurheartj/ehab148

6. Henson J., Tischler G., Ning Z. Next-generation sequencing and large genome assemblies. Pharmacogenomics. 2012; 13(8): 901–15. https://doi.org/10.2217/pgs.12.72

7. Ulintz P.J., Wu W., Gates C.M. Bioinformatics analysis of whole exome sequencing data. Methods Mol. Biol. 2019; 1881: 277–318. https://doi.org/10.1007/978-1-4939-8876-1

8. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Meditsinskaya genetika. 2019; 18(2): 3–23. https://doi.org/10.25557/2073-7998.2019.02.3-23 https://elibrary.ru/jzljue (in Russian)

9. Human Gene Mutation Database (HGMD). Available at: http://www.hgmd.cf.ac.uk

10. McKenna W.J., Judge D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021; 18(1): 22–36. https://doi.org/10.1038/s41569-020-0428-2

11. Limongelli G., Masarone D., Verrengia M., Gravino R., Salerno G., Castelletti S., et al. Diagnostic clues for the diagnosis of nonsarcomeric hypertrophic cardiomyopathy (Phenocopies): Amyloidosis, Fabry disease, and mitochondrial disease. J. Cardiovasc. Echogr. 2018; 28(2): 120–3. https://doi.org/10.4103/jcecho.jcecho_2_18

12. Wright C.F., Campbell P., Eberhardt R.Y., Aitken S., Perrett D., Brent S., et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N. Engl. J. Med. 2023; 388(17): 1559–71. https://doi.org/10.1056/NEJMoa2209046

13. Nguyen M.B., Mital S., Mertens L., Jeewa A., Friedberg M.K., Aguet J., et al. Pediatric hypertrophic cardiomyopathy: exploring the genotype-phenotype association. J. Am. Heart Assoc. 2022; 11(5): e024220. https://doi.org/10.1161/JAHA.121.024220

14. Lipshultz S.E., Law Y.M., Asante-Korang A., Austin E.D., Dipchand A.I., Everitt M.D., et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation. 2019; 140(1): e9–68. https://doi.org/10.1161/cir.0000000000000682

15. Sankaranarayanan R., Fleming E.J., Garratt C.J. Mimics of hypertrophic cardiomyopathy – diagnostic clues to aid early identification of phenocopies. Arrhythm. Electrophysiol. Rev. 2013; 2(1): 36–40. https://doi.org/10.15420/aer.2013.2.1.36

16. Fatehi F., Ashrafi M.R., Babaee M. Recommendations for infantile-onset and late-onset Pompe disease: an Iranian consensus. Front. Neurol. 2021; 12: 739931. https://doi.org/10.3389/ fneur.2021.739931

17. Norrish G., Rance T., Montanes E., Field E., Brown E., Bhole V., et al. Friedreich’s ataxia-associated childhood hypertrophic cardiomyopathy: a national cohort study. Arch. Dis. Child. 2022; 107(5): 450–5. https://doi.org/10.1136/archdischild-2021-322455

18. Fomicheva E.I., Myasnikov R.P., Seliverstov Yu.A., Illarioshkin S.N., Dadali E.L., Drapkina O.M. Cardiomyopathy of Friedreich’s disease. Modern methods of diagnostic. Ratsional’naya farmakoterapiya v kardiologii. 2021; 17(1): 105–10. https://doi.org/10.20996/1819-6446-2021-01-05 https://elibrary.ru/xharxc (in Russian)

19. Sentner C.P., Hoogeveen I.J., Weinstein D.A., Santer R., Murphy E., McKiernan P.J., et al. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis. 2016; 39(5): 697–704. https://doi.org/10.1007/s10545-016-9932-2

20. Lotan D., Salazar-Mendiguchía J., Mogensen J., Rathore F., Anastasakis A., Kaski J., et al. Clinical profile of cardiac involvement in Danon disease: A Multicenter European Registry. Circ. Genom. Precis. Med. 2020; 13(6): e003117. https://doi.org/10.1161/CIRCGEN.120.003117

21. Porto A., Brun F., Severini G., Losurdo P., Fabris E., Taylor M., et al. Clinical spectrum of PRKAG2 syndrome. Circ. Arrhythm. Electrophysiol. 2016; 9(1): e003121. https://doi.org/10.1161/circep.115.003121

22. Hu D., Hu D., Liu L., Barr D., Liu Y., Balderrabano-Saucedo N., et al. Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine. 2020; 54: 102723. https://doi.org/10.1016/j.ebiom.2020.102723

23. Lopez-Sainz A., Dominguez F., Lopes L.R. European Genetic Cardiomyopathies Initiative Investigators. Clinical features and natural history of PRKAG2 variant cardiac glycogenosis. J. Am. Coll. Cardiol. 2020; 76(2): 186–97. https://doi.org/10.1016/j.jacc.2020.05.029

24. Wolf C.M., Arad M., Ahmad F., Sanbe A., Bernstein S.A., Toka O., et al. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation. 2008; 117(2): 144–54. https://doi.org/10.1161/circulationaha.107.726752

25. Murphy R.T., Mogensen J., McGarry K., Bahl A., Evans A., Osman E., et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: Natural history. J. Am. Coll. Cardiol. 2005; 45(6): 922–30. https://doi.org/10.1016/j.jacc.2004.11.053

26. Lynch D.R., Chin M.P., Boesch S., Delatycki M.B., Giunti P., Goldsberry A., et al. Efficacy of omaveloxolone in Friedreich’s ataxia: Delayed-start analysis of the MOXIe extension. Mov. Disord. 2023; 38(2): 313–20. https://doi.org/10.1002/mds.29286

27. ClinicalTrials.gov. A clinical study evaluating a recombinant adeno-associated virus serotype 9 (rAAV9) capsid containing the human lysosome-associated membrane protein 2 isoform B (LAMP2B) transgene (RP-A501; AAV9.LAMP2B) in male patients with DD. Available at: https://beta.clinicaltrials.gov/study/NCT03882437

28. Reichart D., Newby G.A., Wakimoto H., Lun M., Gorham J.M., Curran J.J., et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 2023; 29(2): 412–21. https://doi.org/10.1038/s41591-022-02190-7

29. Sheridan C. Genetic medicines aim straight for the heart. Nat. Biotechnol. 2023; 41(4): 435–7. https://doi.org/10.1038/s41587-023-01745-4


Review

For citations:


Gandaeva L.A., Basargina E.N. Hypertrophic cardiomyopathy in the structure of infiltrative diseases in children. Russian Pediatric Journal. 2023;26(3):152-158. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-3-152-158. EDN: wvosnj

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)