Preview

Russian Pediatric Journal

Advanced search

Neuroendocrine hyperplasia of infancy: 10-year observational study

https://doi.org/10.46563/1560-9561-2022-25-3-150-158

EDN: vmbgwz

Abstract

The aim of the study is to establish the prevalence of neuroendocrine hyperplasia of infancy (NEHI) in the structure of chronic lung diseases (CLD) and congenital lung malformations (CLM), clinical and instrumental diagnostics of these diseases in patients hospitalized at the National Medical Research Center for Children’s Health, Moscow over the period from 2012 to 2022.

Materials and methods. Longitudinal non comparative single-center study of fourteen NEHI patients, diagnosed on the basis of 3 out of 4 signs of childhood CHILD-syndrome and the presence of typical CT signs of diseases, CLD and CLM patients. In all NEHI patients, the prevalence of clinical and instrumental signs was determined according to the scale, which includes 10 signs: onset of signs before the age of 12 months, delayed physical development, absence of drumstick symptom, absence of cough and wheezing (apart from episodes of respiratory infections), chest abnormalities, crackles, hypoxemia, tachypnea, retraction.

Results. NEHI is a rare (0.53%) CLD in infants. The clinical scale for the diagnosis of NEHI is of practical importance in the early diagnosis of diseases; its use can reduce the prescription of drugs that are not effective for NEHI.

Contribution:
Simonova O.I., Meshcheryakov V.V. — concept and design of the study;
Krasyukova A.A., Simonov M.V., Babayan A.R., Kustova O.V. — data collection and processing;
Krasyukova A.A., Simonov M.V. — statistical processing of the data;
Simonova O.I., Smirnova G.I. — writing the text;
Simonova O.I., Ovsyannikov D.Yu., Meshcheryakov V.V. — edi­ting.
All co-authors — аpproval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest. 

Received: June 03, 2022
Accepted: June 10, 2022
Published: July 14, 2022

About the Authors

Olga I. Simonova
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation
Russian Federation

MD, PhD, DSci., Head of the Pulmonary Department of National Medical Research Center for Children’s Health, National Medical Research Center for Children’s Health, 119991, Moscow, Russian Federation. Professor of the Department of Pediatric Rheumatology and Pediatrics of the Sechenov First Moscow State Medical University, Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.

e-mail: oisimonova@mail.ru



Anastasiya A. Krasyukova
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Russian Federation


Dmitry Yu. Ovsyannikov
Russian Peoples’ Friendship University
Russian Federation


Galina I. Smirnova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation
Russian Federation


Vitaly V. Meshcheryakov
Surgut State University
Russian Federation


Olga V. Kustova
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Russian Federation


Anna R. Babayan
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Russian Federation


Maksim V. Simonov
National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Das S., Langston C., Fan L.L. Interstitial lung disease in children. Curr. Opin. Pediatr. 2011; 23(3): 325–31. https://doi.org/10.1097/mop.0b013e3283464a37

2. Länger F., Werlein C., Soudah B., Schwerk N., Jonigk D. Interstitial lung disease in infancy and early childhood. Pathologe. 2021; 42(1): 25–34. https://doi.org/10.1007/s00292-020-00884-8

3. Carr L.L., Kern J.A., Deutsch G.H. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia and neuroendocrine hyperplasia of infancy. Clin. Chest Med. 2016; 37(3): 579–87. https://doi.org/10.1016/j.ccm.2016.04.018

4. Ovsyannikov D.Yu., Belyashova M.A., Boytsova E.V., Asherova I.K., Bronin G.O., Volkov S.N., et al. The nosological structure and features of interstitial lung diseases in children during the first 2 years of life: results of a multicenter study. Neonatologiya: novosti, mneniya, obuchenie. 2018; 6(2): 93–104. https://doi.org/10.24411/2308-2402-2018-00022 (in Russian)

5. Bradley B., Branley H.M., Egan J.J., Greaves M.S., Hansell D.M., Harrison N.K., et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society. Thorax. 2008; 63(Suppl. 5): v1–58. https://doi.org/10.1136/thx.2008.101691

6. Reyes L.J., Majó J., Perich D., Morell F. Neuroendocrine cell hyperplasia as an unusual form of interstitial lung disease. Respir. Med. 2007; 101(8): 1840–3. https://doi.org/10.1016/j.rmed.2005.10.024

7. Bush A., Gilbert C., Gregory J., Nicholson A.G., Semple T., Pabary R. Interstitial lung disease in infancy. Early Hum. Dev. 2020; 150: 105186. https://doi.org/10.1016/j.earlhumdev.2020.105186

8. Morgenthau A.S., Padilla M.L. Spectrum of fibrosing diffuse parenchymal lung disease. Mt Sinai J. Med. 2009; 76(1): 2–23. https://doi.org/10.1002/msj.20087

9. Kerby G.S., Wagner B.D., Popler J., Hay T.C., Kopecky C., Wilcox S.L., et al. Abnormal infant pulmonary function in young children with neuroendocrine cell hyperplasia of infancy. Pediatr. Pulmonol. 2013; 48(10): 1008–15. https://doi.org/10.1002/ppul.22718

10. Smirnov I.E., Tarasova O.V., Lukina O.F., Kustova O.V., Sorokina T.E., Simonova O.I. Structural and functional state of the lungs in cystic fibrosis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(2): 11–7. (in Russian)

11. Mastej E.J., DeBoer E.M., Humphries S.M., Cook M.C., Hunter K.S., Liptzin D.R., et al. Lung and airway shape in neuroendocrine cell hyperplasia of infancy. Pediatr. Radiol. 2018; 48(12): 1745–54. https://doi.org/10.1007/s00247-018-4189-6

12. Gomes V.C., Silva M.C., Maia Filho J.H., Daltro P., Ramos S.G., Brody A.S., et al. Diagnostic criteria and follow-up in neuroendocrine cell hyperplasia of infancy: a case series. J. Bras. Pneumol. 2013; 39(5): 569–78. https://doi.org/10.1590/S1806-37132013000500007

13. Guiot J., Henket M., Frix A.N., Gester F., Thys M., Giltay L., et al. Combined obstructive airflow limitation associated with interstitial lung diseases (O-ILD): the bad phenotype? Respir. Res. 2022; 23(1): 89. https://doi.org/10.1186/s12931-022-02006-9

14. Kurland G., Deterding R.R., Hagood J.S., Young L.R., Brody A.S., Castile R.G., et al. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am. J. Respir. Crit. Care Med. 2013; 188(3): 376–94. https://doi.org/10.1164/rccm.201305-0923ST

15. Cinel G., Kiper N., Orhan D., Emiralioğlu N., Yalçın E., Doğru D., et al. Childhood diffuse parenchymal lung diseases: We need a new classification. Clin. Respir. J. 2020; 14(2): 102–8. https://doi.org/10.1111/crj.13106

16. Griese M. Etiologic classification of diffuse parenchymal (interstitial) lung diseases. J. Clin. Med. 2022; 11(6): 1747. https://doi.org/10.3390/jcm11061747

17. Deutsch G.H., Young L.R., Deterding R.R., Fan L.L., Dell S.D., Bean J.A., et al. Diffuse lung disease in young children: application of a novel classification scheme. Am. J. Respir. Crit. Care Med. 2007; 176(11): 1120–8. https://doi.org/10.1164/rccm.200703-393OC

18. Spielberg D., Moreno-McNeil D., Sockrider M. Neuroendocrine cell hyperplasia of infancy (NEHI)/Hiperplasia de celulas neuroendocrina de la infancia (NEHI). Am. J. Respir. Crit. Care Med. 2021; 204(9): 15–6. https://doi.org/10.1164/rccm.2046P15

19. Cutz E., Yeger H., Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr. Dev. Pathol. 2007; 10(6): 419–35. https://doi.org/10.2350/07-04-0267.1

20. Caimmi S., Licari A., Caimmi D., Rispoli A., Baraldi E., Calabrese F., et al. Neuroendocrine cell hyperplasia of infancy: an unusual cause of hypoxemia in children. Ital. J. Pediatr. 2016; 42(1): 84. https://doi.org/10.1186/s13052-016-0295-y

21. Rauch D., Wetzke M., Reu S., Wesselak W., Schams A., Hengst M., et al. Persistent tachypnea of infancy. Usual and aberrant. Am. J. Respir. Crit. Care Med. 2016; 193(4): 438–47. https://doi.org/10.1164/rccm.201508-1655OC

22. Liu D., Tang Z., Qiu K., Bajinka O., Wang L., Qin L., et al. RSV Promotes epithelial neuroendocrine phenotype differentiation through NODAL signaling pathway. Biomed Res. Int. 2021; 2021: 9956078. https://doi.org/10.1155/2021/9956078

23. Deterding R.R., Fan L.L., Morton R., Hay T.C., Langston C. Persistent tachypnea of infancy (PTI)-a new entity. Pediatr. Pulmonol. 2001; (Suppl. 23): 72–3.

24. Sorokin S.P., Hoyt R.F. Jr., Shaffer M.J. Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc. Res. Tech. 1997; 37(1): 43–61. https://doi.org/10.1002/(sici)1097-0029(19970401)37:1<43::aid-jemt5>3.0.co;2-x

25. Cutz E. Hyperplasia of pulmonary neuroendocrine cells in infancy and childhood. Semin. Diagn. Pathol. 2015; 32(6): 420–37. https://doi.org/10.1053/j.semdp.2015.08.001

26. Brouns I., Verckist L., Pintelon I., Timmermans J.P., Adriaensen D. Functional exploration of the pulmonary NEB ME. Adv. Anat. Embryol. Cell Biol. 2021; 233: 31–67. https://doi.org/10.1007/978-3-030-65817-5_4

27. Noguchi M., Furukawa K.T., Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis. Model Mech. 2020; 13(12): dmm046920. https://doi.org/10.1242/dmm.046920

28. Nevel R.J., Garnett E.T., Worrell J.A., Morton R.L., Nogee L.M., Blackwell T.S., et al. Persistent lung disease in adults with NKX2.1 mutation and familial neuroendocrine cell hyperplasia of infancy. Ann. Am. Thorac. Soc. 2016; 13(8): 1299–304. https://doi.org/10.1513/AnnalsATS.201603-155BC

29. Nevel R.J., Garnett E.T., Schaudies D.A., Young L.R. Growth trajectories and oxygen use in neuroendocrine cell hyperplasia of infancy. Pediatr. Pulmonol. 2018; 53(5): 656–63. https://doi.org/10.1002/ppul.23958

30. Balinotti J.E., Maffey A., Colom A., Roldán O., Díaz W., Medín M., et al. Clinical, functional, and computed tomography findings in a cohort of patients with neuroendocrine cell hyperplasia of infancy. Pediatr. Pulmonol. 2021; 56(6): 1681–6. https://doi.org/10.1002/ppul.25319

31. Vasil’eva E.M., Smirnov I.E., Fisenko A.P., Bakanov M.I., Bogatyreva A.O., Smirnova G.I., et al. Proteolytic enzymes and cytokines in chronic bronchopulmonary diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2018; 21(6): 350–6. https://doi.org/10.18821/1560-9561-2018-21-6-350-356 (in Russian)

32. Laenger F.P., Schwerk N., Dingemann J., Welte T., Auber B., Verleden S., et al. Interstitial lung disease in infancy and early childhood: a clinicopathological primer. Eur. Respir. Rev. 2022; 31(163): 210251. https://doi.org/10.1183/16000617.0251-2021

33. Mouradian Jr G.C., Lakshminrusimha S., Konduri G.G. Perinatal hypoxemia and oxygen sensing. Compr. Physiol. 2021; 11(2): 1653–77. https://doi.org/10.1002/cphy.c190046

34. Liptzin D.R., Pickett K., Brinton J.T., Agarwal A., Fishman M.P., Casey A., et al. Neuroendocrine cell hyperplasia of infancy. Clinical score and comorbidities. Ann. Am. Thorac. Soc. 2020; 17(6): 724–8. https://doi.org/10.1513/AnnalsATS.201908-617OC

35. Spielberg D.R., Brody A.S., Baker M.L., Woods J.C., Towe C.T. Ground-glass burden as a biomarker in neuroendocrine cell hyperplasia of infancy. Pediatr. Pulmonol. 2019; 54(6): 822–7. https://doi.org/10.1002/ppul.24301

36. Yoo H., Hino T., Hwang J., Franks T.J., Han J., Im Y., et al. Connective tissue disease-related interstitial lung disease (CTD-ILD) and interstitial lung abnormality (ILA): Evolving concept of CT findings, pathology and management. Eur. J. Radiol. Open. 2022; 9: 100419. https://doi.org/10.1016/j.ejro.2022.100419

37. El-Ali A.M., Strubel N.A., Lala S.V. Congenital lung lesions: a radiographic pattern approach. Pediatr. Radiol. 2022; 52(4): 622–36. https://doi.org/10.1007/s00247-021-05210-9

38. Brody A.S., Guillerman R.P., Hay T.C., Wagner B.D., Young L.R., Deutsch G.H., et al. Neuroendocrine cell hyperplasia of infancy: diagnosis with high-resolution CT. AJR Am. J. Roentgenol. 2010; 194(1): 238–44. https://doi.org/10.2214/AJR.09.3385

39. Murali Mohan B.V., Tousheed S.Z., Manjunath P.H., Ravichandra M.R., Ranganatha R., Annapandian V.M., et al. Multidisciplinary team obviates biopsy in most patients with diffuse parenchymal lung diseases – A retrospective study from India. Clin. Respir. J. 2021; 15(7): 761–9. https://doi.org/10.1111/crj.13358

40. Pearce M.S., Salotti J.A., Little M.P., McHugh K., Lee C., Kim K.P., et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012; 380(9840): 499–505. https://doi.org/10.1016/S0140-6736(12)60815-0

41. Hauptmann M., Daniels R.D., Cardis E., Cullings H.M., Kendall G., Laurier D., et al., Epidemiological studies of low-dose ionizing radiation and cancer: summary bias assessment and meta-analysis. J. Natl Cancer Inst. Monogr. 2020; 2020(56): 188–200. https://doi.org/10.1093/jncimonographs/lgaa010

42. Berrington de Gonzalez A., Pasqual E., Veiga L. Epidemiological studies of CT scans and cancer risk: the state of the science. Br. J. Radiol. 2021; 94(1126): 20210471. https://doi.org/10.1259/bjr.20210471

43. Armes J.E., Mifsud W., Ashworth M. Diffuse lung disease of infancy: a pattern-based, algorithmic approach to histological diagnosis. J. Clin. Pathol. 2015; 68(2): 100–10. https://doi.org/10.1136/jclinpath-2014-202685

44. Chen X., Luo J., Yang L., Hou L., Jie B., Hu Y., et al. The diagnostic value of transbronchial lung cryobiopsy combined with rapid on-site evaluation in diffuse lung diseases: a prospective and self-controlled study. BMC Pulm. Med. 2022; 22(1): 124. https://doi.org/10.1186/s12890-022-01898-z

45. Ovsyannikov D.Yu., Boytsova E.V., Belyashova M.A., Asherova I.K. Interstitial Lung Disease in Infants [Interstitsial’nye zabolevaniya legkikh u mladentsev]. Moscow; 2014. (in Russian)

46. Deterding R.R., DeBoer E.M., Cidon M.J., Robinson T.E., Warburton D., Deutsch G.H., et al. Approaching clinical trials in childhood interstitial lung disease and pediatric pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2019; 200(10): 1219–27. https://doi.org/10.1164/rccm.201903-0544CI

47. Maret-Ouda J., Markar S.R., Lagergren J. Gastroesophageal reflux disease. JAMA. 2020; 324(24): 2565. https://doi.org/10.1001/jama.2020.21573

48. Marczak H., Peradzyńska J., Seidl E., Griese M., Urbankowski T., Lange J., et al. The improved clinical course of persistent tachypnea of infancy with inhaled bronchodilators and corticosteroids. Pediatr. Pulmonol. 2021; 56(12): 3952–9. https://doi.org/10.1002/ppul.25674

49. Ahmed S., Handa R. Management of connective tissue disease-related interstitial lung disease. Curr. Pulmonol. Rep. 2022; 1–13. https://doi.org/10.1007/s13665-022-00290-w

50. Alharbi S.A. Sr. Childhood interstitial lung disease in an immunocompetent patient without exposure. Cureus. 2022; 14(2): e22266. https://doi.org/10.7759/cureus.22266

51. Lelii M., Patria M.F., Pinzani R., Tenconi R., Mori A., Bonelli N., et al. Role of high-resolution chest computed tomography in a child with persistent tachypnoea and intercostal retractions: a case report of neuroendocrine cell hyperplasia. Int. J. Environ. Res. Public Health. 2017; 14(10): 1113. https://doi.org/10.3390/ijerph14101113

52. Ferraro V.A., Zanconato S., Zamunaro A., Carraro S. Children’s interstitial and diffuse lung diseases (ChILD) in 2020. Children (Basel). 2020; 7(12): 280. https://doi.org/10.3390/children7120280

53. Vece T.J., Wambach J.A., Hagood J.S. Childhood rare lung disease in the 21st century: “-omics” technology advances accelerating discovery. Pediatr. Pulmonol. 2020; 55(7): 1828–37. https://doi.org/10.1002/ppul.24809

54. Griese M., Seidl E., Hengst M., Reu S., Rock H., Anthony G., et al. International management platform for children’s interstitial lung disease (chILD-EU). Thorax. 2018; 73(3): 231–9. https://doi.org/10.1136/thoraxjnl-2017-210519

55. Houin P.R., Deterding R.R., Young L.R. Exacerbations in neuroendocrine cell hyperplasia of infancy are characterized by increased air trapping. Pediatr. Pulmonol. 2016; 51(3): E9-12. https://doi.org/10.1002/ppul.23347

56. Smirnov I.E., Kustova O.V., Sorokina T.E., Kucherenko A.G. Markers of fibrosis in chronic bronchopulmonary diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(1): 14–20. (in Russian)

57. Vasil’eva E.M., Bakanov M.I., Smirnov I.E., Bogatyreva A.O., Simonova O.I. Changes in the content of microelements and oxidative stress indices in children with chronic bronchopulmonary pathology. Rossiyskiy pediatricheskiy zhurnal. 2017; 20(6): 339–45. https://doi.org/10.18821/1560-9561-2017-20-6-339-345 (in Russian)

58. Shah A.S., Black E.D., Simon D.M., Gambello M.J., Garber K.B., Iannucci G.J., et al. Heterogeneous pulmonary phenotypes in Filamin A mutation-related lung disease. Pediatr. Allergy Immunol. Pulmonol. 2021; 34(1): 7–14. https://doi.org/10.1089/ped.2020.1280

59. Seidl E., Carlens J., Schwerk N., Wetzke M., Marczak H., Lange J., et al. Persistent tachypnea of infancy: Follow up at school age. Pediatr. Pulmonol. 2020; 55(11): 3119–25. https://doi.org/10.1002/ppul.25004


Review

For citations:


Simonova O.I., Krasyukova A.A., Ovsyannikov D.Yu., Smirnova G.I., Meshcheryakov V.V., Kustova O.V., Babayan A.R., Simonov M.V. Neuroendocrine hyperplasia of infancy: 10-year observational study. Russian Pediatric Journal. 2022;25(3):150-158. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-3-150-158. EDN: vmbgwz

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)