Preview

Российский педиатрический журнал

Расширенный поиск

Цистатин С и липокалин — эндогенные маркёры клубочковой фильтрации у детей, родившихся недоношенными

https://doi.org/10.46563/1560-9561-2022-25-3-206-211

EDN: yobfgy

Аннотация

Необходимость поиска новых маркеров функционального состояния почек увеличивается в связи с ростом числа глубоко недоношенных новорождённых. В обзоре проведён анализ публикаций, посвящённых возможностям оценки функции почек с помощью цистатина С и липокалина у детей, рождённых недоношенными. Постоянная скорость продукции цистатина С во всех тканях, его элиминация через почечный клубочковый фильтр, отсутствие секреции в проксимальных канальцах, а также независимость от многих факторов, включая пол, возраст, диету, воспаление, являются идеальными условиями для его использования в качестве эндогенного биохимического маркера клубочковой фильтрации. Установлено, что за счёт биохимических особенностей анализ сывороточных уровней цистатина С является перспективным методом в диагностике острого почечного повреждения у недоношенных новорождённых. Для комплексной оценки функций почек у недоношенных детей может иметь значение совместное одновременное определение уровней липокалина и цистатина С в крови. При этом оценка данных показателей может иметь диагностическую значимость в прогнозировании развития хронической болезни почек у детей, перенёсших в младенчестве острое повреждение почек. Сделан вывод, что отсутствие референсных значений липокалина и цистатина С у недоношенных детей сдерживает клиническое использование их количественного анализа для комплексной оценки функционального состояния почек. 

Финансирование. Исследование не имело финансовой поддержки.

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Поступила 18.05.2022
Принята к печати 10.06.2022
Опубликована 14.07.2022

Об авторе

Белла Джемалиевна Цинцадзе
ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России
Россия

Аспирант отделения патологии раннего детского возраста ФГАУ «НМИЦ здоровья детей» Минздрава России.

e-mail: tsintsadze.bd@nczd.ru



Список литературы

1. Chaturvedi S., Ng K.H., Mammen C. The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr. Nephrol. 2017; 32(2) 227-41. https://doi.org/10.1007/s00467-015-3298-9

2. Duzova A., Bakkaloglu A., Kalyoncu M., Poyrazoglu Y., Delibas A., Ozkaya O., et al. Etiology and outcome of acute kidney injury in children. Pediatr. Nephrol. 2010; 25(8): 1453-61. https://doi.org/10.1007/s00467-010-1541-y

3. Piepsz A., Tondeur M., Ham H. Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur. J. Nucl. Med. Mol. Imaging. 2006; 33(12): 1477-82. https://doi.org/10.1007/s00259-006-0179-2

4. Faa G., Gerosa C., Fanni D., Nemolato S., Locci A., Cabras T., et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J. Matern. Fetal. Neonatal. Med. 2010; 23(Suppl. 3): 129-33. https://doi.org/10.3109/14767058.2010.510646

5. Rodríguez M.M., Gómez A.H., Abitbol C.L., Chandar J.J., Duara S., Zilleruelo G.E. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 2004; 7(1): 17-25. https://doi.org/10.1007/s10024-003-3029

6. Iacobelli S., Guignard J.P. Maturation of glomerular filtration rate in neonates and infants: an overview. Pediatr. Nephrol. 2021; 36(6): 1439-46. https://doi.org/10.1007/s00467-020-04632-1

7. Branagan A., Costigan C.S., Stack M., Slagle C., Molloy E.J. Management of acute kidney injury in extremely low birth weight infants. Front. Pediatr. 2022; 10: 867715. https://doi.org/10.3389/fped.2022.867715

8. Kuo J., Akison L.K., Chatfield M.D., Trnka P., Moritz K.M. Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy. J. Nephrol. 2022. https://doi.org/10.1007/s40620-022-01307-y

9. Randers E., Krue S., Erlandsen E.J., Danielsen H., Hansen L.G. Reference interval for serum cystatin C in children. Clin. Chem. 1999; 45(10): 1856-8.

10. Barrett A.J., Davies M.E., Grubb A. The place of human γ-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem. Biophy. Res.Commun. 1984; 120(2): 631-6. https://doi.org/10.1016/0006-291x(84)91302-0

11. Grubb A., Löfberg H. Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc. Natl. Acad. Sci. USA. 1982; 79(9): 3024-7. https://doi.org/10.1073/pnas.79.9.3024

12. Simonsen O., Grubb A., Thysell H. The blood serum concentration of cystatin C (γ-trace) as a measure of the glomerular filtration rate. Scand. J. Clin. Lab. Invest. 1985; 45(2): 97-101. https://doi.org/10.3109/00365518509160980

13. Hidayati E.L., Utami M.D., Rohsiswatmo R., Tridjaja B. Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr. Nephrol. 2021; 36(1): 181-6. https://doi.org/10.1007/s00467-020-04668-3

14. Grubb A. Cystatin C is indispensable for evaluation of kidney disease. EJIFCC. 2017; 28(4): 268-76.

15. Hidayati E.L., Utami M.D., Rohsiswatmo R., Tridjaja B. Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr. Nephrol. 2021; 36(1): 181-6. https://doi.org/10.1007/s00467-020-04668-3

16. Shlipak M.G., Katz R., Sarnak M.J., Fried L.F., Newman A.B., Stehman-Breen C., et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann.Intern. Med. 2006; 145(4): 237-46. https://doi.org/10.7326/0003-4819-145-4-200608150-00003

17. Kandasamy Y., Smith R., Wright I. M. Measuring cystatin C to determine renal function in neonates. Pediatr. Crit. Care Med. 2013; 14(3): 318-22. https://doi.org/10.1097/pcc.0b013e318271f4a5

18. Ziegelasch N., Vogel M., Müller E., Tremel N., Jurkutat A., Löffler M., et al. Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr. Nephrol. 2019; 34(3): 449-57. https://doi.org/10.1007/s00467-018-4087-z

19. Sethi S.K., Bunchman T., Chakraborty R., Raina R. Pediatric acute kidney injury: new advances in the last decade. Kidney. Res. Clin. Pract. 2021; 40(1): 40-51. https://doi.org/10.23876/j.krcp.20.074

20. Uemura O., Ushijima K., Nagai T., Yamada T., Hayakawa H., Nabeta Y., et al. Reference serum cystatin C levels in Japanese children. Clin. Exp. Nephrol. 2010; 14(5): 453-6. https://doi.org/10.1007/s10157-010-0314-z

21. Harmoinen A., Ylinen E., Ala-Houhala M., Janas M., Kaila M., Kouri T. Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr. Nephrol. 2000; 15(1-2): 105-8. https://doi.org/10.1007/s004670000421

22. Armangil D., Yurdakök M., Canpolat F.E., Korkmaz A., Yiğit S., Gülsevin T. Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr. Nephrol. 2008; 23(11): 2081-3. https://doi.org/10.1007/s00467-008-0867-1

23. Renganathan A., Warner B.B., Tarr P.I., Dharnidharka V.R. The progression of serum cystatin C concentrations within the first month of life after preterm birth-a worldwide systematic review. Pediatr. Nephrol. 2021; 36(7): 1709-18. https://doi.org/10.1007/s00467-020-04543-1

24. Monzani A., Crespi I., Genoni G., Edefonti A., Montini G., Bellomo G., et al. Kidney-Detrimental factors and estimated glomerular filtration rate in preterm newborns: the role of nutrition. Nutrients. 2020; 12(3): 651. https://doi.org/10.3390/nu12030651

25. Schwartz G.J., Schneider M.F., Maier P.S., Moxey-Mims M., Dharnidharka V.R., Bradley A., et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney.Int. 2012; 82(4): 445-53. https://doi.org/10.1038/ki.2012.169

26. Hasson D., Menon S., Gist K.M. Improving acute kidney injury diagnostic precision using biomarkers. Pract. Lab. Med. 2022; 30: e00272. https://doi.org/10.1016/j.plabm.2022.e00272

27. Abitbol C.L., Seeherunvong W., Galarza M.G., Katsoufis C., Francoeur D., Defreitas M., et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J. Pediatr. 2014; 164(5): 1026-31.e2. https://doi.org/10.1016/j.jpeds.2014.01.044

28. Bardallo Cruzado L., Pérez González E., Martínez Martos Z., Bermudo Guitarte C., Granero Asencio M., Luna Lagares S., et al. Serum cystatin C levels in preterm newborns in our setting: Correlation with serum creatinine and preterm pathologies. Nefrologia. 2015; 35(3): 296-303. https://doi.org/10.1016/j.nefro.2015.05.004

29. Treiber M., Pecovnik-Balon B., Gorenjak M. Cystatin C versus creatinine as a marker of glomerular filtration rate in the newborn. Wien. Klin. Wochenschr. 2006; 118(Suppl. 2): 66-70. https://doi.org/10.1007/s00508-006-0555-8

30. Nakhjavan-Shahraki B., Yousefifard M., Ataei N., Baikpour M., Ataei F., Bazargani B., et al. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol. 2017; 18(1): 120. https://doi.org/10.1186/s12882-017-0539-0

31. Hidayati E.L., Utami M.D., Rohsiswatmo R., Tridjaja B. Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr. Nephrol. 2021; 36(1): 181-6. https://doi.org/10.1007/s00467-020-04668-3

32. Villacrés S.M., Medar S.S., Aydin S.I. Acute kidney injury in children With acute respiratory failure. Clin. Pediatr. (Phila).2018; 57(11): 1340-8. https://doi.org/10.1177/0009922818779222

33. Elmas A.T., Tabel Y., Elmas O.N. Serum cystatin C predicts acute kidney injury in preterm neonates with respiratory distress syndrome. Pediatr. Nephrol. 2013; 28(3): 477-84. https://doi.org/10.1007/s00467-012-2331-5

34. El-Gammacy T.M., Shinkar D.M., Mohamed N.R., Al-Halag A.R. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome. Scand. J. Clin. Lab. Invest. 2018; 78(5): 352-7. https://doi.org/10.1080/00365513.2018.1472803

35. Cho S.Y., Lee H.J., Suh J.T., Cho B.S., Suh J.S. Cystatin C/creatinine ratio in pediatric kidney disease. Clin. Exp. Nephrol. 2011; 15(6): 976-7. https://doi.org/10.1007/s10157-011-0535-9

36. Korkut S., Memur Ş., Halis H., Baştuğ O., Korkmaz L., Özdemir A., et al. A study of the relationship between cystatin C and metabolic bone disease in preterm infants. J. Clin. Res. Pediatr. Endocrinol. 2018; 10(2): 119-24. https://doi.org/10.4274/jcrpe.2088

37. Kjeldsen L., Johnsen A.H., Sengeløv H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993; 268(14): 10425-32.

38. Xu S., Venge P. Lipocalins as biochemical markers of disease. Biochim. Biophys. Acta. 2000; 1482(1-2): 298-307. https://doi.org/10.1016/s0167-4838(00)00163-1

39. Wu Y., Wang H., Pei J., Jiang X., Tang J. Acute kidney injury in premature and low birth weight neonates: a systematic review and meta-analysis. Pediatr. Nephrol. 2022; 37(2): 275-87. https://doi.org/10.1007/s00467-021-05251-0

40. Mishra J., Mori K., Ma Q., Kelly C., Yang J., Mitsnefes M., et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 2004; 15(12): 3073-82. https://doi.org/10.1097/01.asn.0000145013.44578.45

41. Mori K., Lee H.T., Rapoport D., Drexler I.R., Foster K., Yang J., et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 2005; 115(3): 610-21. https://doi.org/10.1172/JCI23056

42. Schmidt-Ott K.M., Mori K., Kalandadze A., Li J.Y., Paragas N., Nicholas T., et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr. Opin. Nephrol. Hypertens. 2006; 15(4): 442-9. https://doi.org/10.1097/01.mnh.0000232886.81142.58

43. Zappitelli M., Washburn K.K., Arikan A.A., Loftis L., Ma Q., Devarajan P., et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit. Care. 2007; 11(4): R84. https://doi.org/10.1186/cc6089

44. McMahon K.R., Chui H., Rassekh S.R., Schultz K.R., Blydt-Hansen T.D., Mammen C., et al. Urine neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 to detect pediatric cisplatin-associated acute kidney injury. Kidney360. 2021; 3(1): 37-50. https://doi.org/10.34067/KID.0004802021

45. Yilmaz A., Sevketoglu E., Gedikbasi A., Karyagar S., Kiyak A., Mulazimoglu M., et al. Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr. Nephrol. 2009; 24(12): 2387-92. https://doi.org/10.1007/s00467-009-1279-6

46. Krzemień G., Pańczyk-Tomaszewska M., Kotuła I., Demkow U., Szmigielska A. Serum neutrophil gelatinase-associated lipocalin for predicting acute pyelonephritis in infants with urinary tract infection. Cent. Eur. J. Immunol. 2019; 44(1): 45-50. https://doi.org/10.5114/ceji.2019.84016

47. Parravicini E., Nemerofsky S.L., Michelson K.A., Huynh T.K., Sise M.E., Bateman D.A., et al. Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late onset culture-positive sepsis in very low birth weight infants. Pediatr. Res. 2010; 67(6): 636-40. https://doi.org/10.1203/PDR.0b013e3181da75c1

48. Nickolas T.L., O’Rourke M.J., Yang J., Sise M.E., Canetta P.A., Barasch N., et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann.Intern. Med. 2008; 148(11): 810-9. https://doi.org/10.7326/0003-4819-148-11-200806030-00003

49. Parravicini E., Lorenz J.M., Nemerofsky S.L., O’Rourke M., Barasch J., Bateman D. Reference range of urinary neutrophil gelatinase-associated lipocalin in very low-birth-weight infants: preliminary data. Am. J. Perinatol. 2009; 26(6): 437-40. https://doi.org/10.1055/s-0029-1214242

50. Huynh T.K., Bateman D.A., Parravicini E., Lorenz J.M., Nemerofsky S.L., Sise M.E., et al. Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr. Res. 2009; 66(5): 528-32. https://doi.org/10.1203/PDR.0b013e3181baa3dd

51. Ronco C., Legrand M., Goldstein S.L., Hur M., Tran N., Howell E.C., et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014; 37(4): 271-85. https://doi.org/10.1159/000360689

52. Lavery A.P., Meinzen-Derr J.K., Anderson E., Ma Q., Bennett M.R., Devarajan P., et al. Urinary NGAL in premature infants Pediatr. Res. 2008; 64(4): 423-8. https://doi.org/10.1203/PDR.0b013e318181b3b2

53. Filho L.T., Grande A.J., Colonetti T., Della E.S.P., da Rosa M.I. Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr. Nephrol. 2017; 32(10): 1979-88. https://doi.org/10.1007/s00467-017-3704-6

54. Capelli I., Vitali F., Zappulo F., Martini S., Donadei C., Cappuccilli M., et al. Biomarkers of kidney injury in very-low-birth-weight preterm infants: influence of maternal and neonatal factors. In Vivo. 2020; 34(3): 1333-9. https://doi.org/10.21873/invivo.11910

55. Suchojad A., Tarko A., Smertka M., Majcherczyk M., Brzozowska A., Wroblewska J., et al. Factors limiting usefulness of serum and urinary NGAL as a marker of acute kidney injury in preterm newborns. Ren. Fail. 2015; 37(3): 439-45. https://doi.org/10.3109/0886022X.2014.996109

56. Yuan S.M. Acute kidney injury after pediatric cardiac surgery. Pediatr. Neonatol. 2019; 60(1): 3-11. https://doi.org/10.1016/j.pedneo.2018.03.007

57. Mishra J., Dent C., Tarabishi R., Mitsnefes M.M., Ma Q., Kelly C., et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005; 365(9466): 1231-8. https://doi.org/10.1016/S0140-6736(05)74811-X

58. Seitz S., Rauh M., Gloeckler M., Cesnjevar R., Dittrich S., Koch A.M. Cystatin C and neutrophil gelatinase-associated lipocalin: biomarkers for acute kidney injury after congenital heart surgery. Swiss. Med. Wkly. 2013; 143: w13744. https://doi.org/10.4414/smw.2013.13744

59. Herbert C. Patel M., Nugent A., Dimas V.V., Guleserian K.J., Quigley R., et al. Serum cystatin C as an early marker of neutrophil gelatinase-associated lipocalin-positive acute kidney injury resulting from cardiopulmonary bypass in infants with congenital heart disease. Congenit. Heart Dis. 2015; 10(4): 180-8. https://doi.org/10.1111/chd.12253

60. Sellmer A., Bech B.H., Bjerre J.V., Schmidt M.R., Hjortdal V.E., Esberg G., et al. Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: a cohort study. BMC Pediatr. 2017; 17(1): 7. https://doi.org/10.1186/s12887-016-0761-0

61. Inoue H., Ohga S., Kusuda T., Kitajima J., Kinjo T., Ochiai M., et al. Serum neutrophil gelatinase-associated lipocalin as a predictor of the development of bronchopulmonary dysplasia in preterm infants. Early Hum. Dev. 2013; 89(6): 425-9. https://doi.org/10.1016/j.earlhumdev.2012.12.011

62. Sutherland S.M., Zappitelli M., Alexander S.R., Chua A.N., Brophy P.D., Bunchman T.E., et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am. J. Kidney. Dis. 2010; 55(2): 316-25. https://doi.org/10.1053/j.ajkd.2009.10.048

63. Roy J.P., Krallman K.A., Basu R.K., Chima R.S., Fei L., Wilder S., et al. Early sequential risk stratification assessment to optimize fluid dosing, CRRT initiation and discontinuation in critically ill children with acute kidney injury: taking focus 2 process article. J. Clin. Trials. 2020; 10(6): 435.

64. Elmas A.T., Tabel Y., Ipek S. Determination of reference values for urinary neutrophil gelatinase-associated lipocalin in premature infants. J. Matern. Fetal. Neonatal. Med. 2014; 27(2): 187-91. https://doi.org/10.3109/14767058.2013.806900

65. Waikar S.S., Liu K.D., Chertow G.M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2008; 3(3): 844-61. https://doi.org/10.2215/cjn.05191107


Рецензия

Для цитирования:


Цинцадзе Б.Д. Цистатин С и липокалин — эндогенные маркёры клубочковой фильтрации у детей, родившихся недоношенными. Российский педиатрический журнал. 2022;25(3):206-211. https://doi.org/10.46563/1560-9561-2022-25-3-206-211. EDN: yobfgy

For citation:


Tsintsadze B.D. Cystatin C and lipocalin — endogenous markers of glomerular filtration in children born prematurely. Russian Pediatric Journal. 2022;25(3):206-211. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-3-206-211. EDN: yobfgy

Просмотров: 212


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)