Preview

Russian Pediatric Journal

Advanced search

Vaccination against the new coronavirus infection SARS-CoV-2. The current state of the problem

https://doi.org/10.46563/1560-9561-2022-25-2-139-146

EDN: kinehn

Abstract

Vaccines against the new coronavirus infection (COVID-19 or SARS-CoV-2) have been developed at an unprecedented pace since the beginning of the pandemic. Some of them have received permission for mass production already at the stage of clinical trials. COVID vaccines are now being used on a large scale over the world. In the review article describes the characteristics of used both abroad and in Russia COVID vaccines, differed in structure and mechanism of action. The data of clinical research on their efficiency and safety is presented. In modern conditions of a pandemic of a new coronavirus infection, vaccination was shown to be the most effective method of prevention, which can significantly reduce morbidity and mortality due to coronavirus. There are considered such nuances of coronavirus vaccination, as the need for a booster dose, vaccination of children and adolescents. Rare adverse events are described. However, given the relatively small experience and short duration of the use of coronavirus vaccines, there are many questions concerning vaccination of persons with disorders in the immune system, vaccination of infants, the impact of changes in coronavirus strains on the effectiveness of the vaccines used, and many others. All these issues require further research, which continues all over the world. The authors recommend applying the knowledge about COVID vaccines in daily practice, constantly updating them, which will indirectly help to ensure maximum vaccination coverage of the population against coronavirus, including children and adolescents.

Contribution:
Galitskaya M.G., Makarova S.G. — research concept and design of the study;
Galitskaya M.G. — collection and processing of material and text writing;
Makarova S.G., Fisenko A.P. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship. 

Conflict of interest. The authors declare no conflict of interest.

Received: March 28, 2022
Accepted: April 26, 2022
Published: May 07, 2022

About the Authors

Marina G. Galitskaya
National Medical Research Center for Children’s Health
Russian Federation

MD, PhD, Senior Researcher, Department of Preventive Pediatrics of National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation.

e-mail: galitskaya.mg@nczd.ru



Andrey P. Fisenko
National Medical Research Center for Children’s Health; Lomonosov Moscow State University
Russian Federation


Svetlana G. Makarova
National Medical Research Center for Children’s Health; Lomonosov Moscow State University
Russian Federation


References

1. Li Y.D., Chi W.Y., Su J.H., Ferrall L., Hung C.F., Wu T.C. Coronavirus vaccine development: from SARS and MERS to COVID-19. J. Biomed. Science. 2020; 27(1): 104. https://doi.org/10.1186/s12929-020-00695-2

2. Reuters. CanSino’s COVID-19 vaccine approved for military use in China; 2020. Available at: https://www.reuters.com/article/us-health-coronavirus-china-vaccine-idUSKBN2400DZ

3. Ministry of Health of the Russian Federation. The Russian Ministry of Health has registered the world’s first COVID-19 vaccine; 2020. https://minzdrav.gov.ru/news/2020/08/11/14657-minzdrav-rossii-zaregistriroval-pervuyu-v-mire-vaktsinu-ot-covid-19 (in Russian)

4. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process. Guidance Document 02 March 2022. https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_02March2022.pdf

5. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 2003; 77(16): 8801–11. https://doi.org/10.1128/JVI.77.16.8801–8811.2003

6. Watanabe Y., Allen J.D., Wrapp D., McLellan J.S., Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020; 369(6501): 330–3. https://doi.org/10.1101/2020.03.26.010322

7. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260–3. https://doi.org/10.1126/science.abb2507

8. Dolgin E. CureVac COVID vaccine let-down spotlights mRNA design challenges. Nature. 2021; 594(7864): 483. https://doi.org/10.1038/d41586-021-01661-0

9. Pardi N., Hogan M.J, Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020; 65: 14–20. https://doi.org/10.1016/j.coi.2020.01.008

10. Dicks M.D.J., Spencer A.J., Edwards N.J., Wadell G., Bojang K., Gilbert S.C., et al. A novel Chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One. 2012; 7(7): e40385. https://doi.org/10.1371/journal.pone.0040385

11. Almuqrin A., Davidson A.D., Williamson M.K., Lewis P.A., Heesom K.J., Morris S., et al. SARS-CoV-2 vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals low levels of viral backbone gene transcription alongside very high levels of SARS-CoV-2 S glycoprotein gene transcription. Genome Med. 2021; 13(1): 43. https://doi.org/10.1186/s13073-021-00859-1

12. Xia S., Zhang Y., Wang Y., Wang H., Yang Y., Gao G.F., et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021; 21(1): 39–51. https://doi.org/10.1016/S1473-3099(20)30831-8

13. Zhang Y., Zeng G., Pan H., Li C., Hu Y., Chuet K., et al. Safety, to lerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021; 21(2): 181–92. https://doi.org/10.1016/S1473-3099(20)30843-4

14. Wang Y., Yang C., Song Y., Coleman J.R., Stawowczyk M., Tafrova J., et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc. Natl Acad. Sci. USA. 2021; 118(29): e2102775118. https://doi.org/10.1073/pnas.2102775118

15. Ryzhikov A.B., Ryzhikov E.A., Bogryantseva M.P., Usova S.V., Danilenko E.D., Nechaeva E.A., et al. A single blind, placebo-controlled randomized study of the safety, reactogeniccity and immunogenicity of the «EPIVACCORONA» vaccine for the prevention of COVID-19, in volunteers aged 18-60 years (phase I–II). Russian Journal of Infection and Immunity. 2021; 11(2): 283–96. https://doi.org/10.15789/2220-7619-ASB-1699

16. Heath P.T., Galiza E.P., Baxter D.N., Boffito M., Browne D., Burn F., et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 2021; 385(13): 1172–83. https://doi.org/10.1056/NEJMoa2107659

17. Yuan P., Ai P., Liu Y., Ai Z., Wang Y., Cao W., et al. Safety, to lerability, and immunogenicity of COVID-19 vaccines: a systematic review and meta-analysis. medRxiv. The preprint server for health sciences. 2020; 2020.11.03.20224998. https://doi.org/10.1101/2020.11.03.20224998

18. Sharif N., Alzahrani K.J., Ahmed S.N., Dey S.K. Efficacy, immunogenicity and safety of COVID-19 vaccines: a systematic review and meta-analysis. Front. Immunol. 2021; 12: 714170. https://doi.org/10.3389/fimmu.2021.714170

19. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021; 384(5): 403–16. https://doi.org/10.1056/NEJMoa2035389

20. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397(10275): 671–81. https://doi.org/10.1016/S0140-6736(21)00234-8

21. Menni C., Klaser K., May A., Polidori L., Capdevila J., Louca P., et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect. Dis. 2021; 21(7): 939–49. https://doi.org/10.1016/S1473-3099(21)00224-3

22. Voysey M., Clemens S.A., Madhi S.A., Weckx L.Y., Folegatti P.M., Aley P.K., et al. Safety and Efficacy of the ChAdOx1 Ncov-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomized controlled trials in Brazil, South Africa, and the UK. Lancet. 2021; 397(10269): 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1

23. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020; 383(27): 2603–15. https://doi.org/10.1056/NEJMoa2034577

24. Sadoff J., Gray G., Vandebosch A., Cárdenas V., Shukarev G., Grinsztejn B., et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against COVID-19. N. Engl. J. Med. 2021; 384(23): 2187–201. https://doi.org/10.1056/NEJMoa210154

25. Emary K.R., Golubchik T., Aley P.K., Ariani C.V., Angus B., Bibi S., et al. Efficacy of ChAdOx1 Ncov-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a ran domized controlled trial. Lancet. 2021; 397(10282): 1351–62. https://doi.org/10.1016/S0140-6736(21)00628-0

26. Schultz N.H., Sorvoll I.H., Michelsen A.E., Munthe L.A., Lund-Johansen F., Ahlen M.T., et al. Thrombosis and thrombocytopenia after ChAdOx1 Ncov-19 vaccination. N. Engl. J. Med. 2021; 384(22): 2124–30. https://doi.org/10.1056/NEJMoa2104882

27. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021; 384(5): 403–16. https://doi.org/10.1056/NEJMoa2035389

28. Krause P.R., Fleming T.R., Peto R., Longini I.M., Figueroa J.P., Sterne J.A.C., et al. Considerations in boosting COVID-19 vaccine immune responses. Lancet. 2021; 398(10308): 1377–80. https://doi.org/10.1016/s0140-6736(21)02046-8

29. Sahin U., Muik A., Derhovanessian E., Vogler I., Kranz L.M., Vormehr M., et al. COVID-19 Vaccine BNT162b1 elicits human antibody and TH1 TCell responses. Nature. 2020; 586(7830): 594–9. https://doi.org/10.1038/s41586-020-2814-7

30. Garcia-Beltran W.F., Lam E.C., Denis K.S., Nitido A.D., Garcia Z.H., Hauser B.M., et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021; 184(9): 2372–83.e9. https://doi.org/10.1016/j.cell.2021.03.013

31. Atmar R.L., Lyke K.E., Deming M.E., Jackson L.A., Branche A.R., El Sahly H.M., et al. Homologous and heterologous Covid-19 booster vaccinations. N. Engl. J. Med. 2022; 386(11): 1046–57. https://doi.org/10.1056/NEJMoa2116414

32. Dolgin E. Is one vaccine dose enough if you’ve had COVID? What the science says. Nature. 2021; 595(7866): 161–2. https://doi.org/10.1038/d41586-021-01609-4

33. WHO. Dr. Soumya Swaminathan. Science conversation. Episod e#50 – Do I still need the vaccine if I have COVID-19? https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/science-in-5/episode-50---do-i-still-need-the-vaccine-if-i-have-covid-19

34. Alyson M.C., Spicer K.B., Thoroughman D., Glick C., Winter K. Reduced risk of Reinfection with SARS-CoV-2 after COVID-19 vaccination – Kentucky, May–June 2021. MMWR. Morb. Mortal. Wkly Rep. 2021; 70(32): 1081–3. https://doi.org/10.15585/mmwr.mm7032e1

35. WHO. Interim statement on COVID-19 vaccination for children and adolescents. Available at: https://www.who.int/news/item/24-11-2021-interim-statement-on-covid-19-vaccination-for-children-and-adolescents

36. Luk A., Clarke B., Dahdah N., Ducharme A., Krahn A., McCrindle B., et al. Myocarditis and pericarditis after COVID-19 mRNA vaccination: practical considerations for care providers. Can. J. Cardiol. 2021; 37(10): 1629–34. https://doi.org/10.1016/j.cjca.2021.08.001

37. Tarasova A.A., Kostinov M.P., Kvasova M.A. Vaccination of children against a novel coronavirus disease and immunization tactics in patients with chronic diseases. Pediatriya. Zhurnal imeni G.N. Speranskogo. 2021; 100(6): 15–22. (in Russian) https://doi.org/10.24110/0031-403X-2021-100-6-15-22


Review

For citations:


Galitskaya M.G., Fisenko A.P., Makarova S.G. Vaccination against the new coronavirus infection SARS-CoV-2. The current state of the problem. Russian Pediatric Journal. 2022;25(2):139-146. (In Russ.) https://doi.org/10.46563/1560-9561-2022-25-2-139-146. EDN: kinehn

Views: 101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)