Role of lipids in nutrition of premature babies with bronchopulmonary dysplasia
https://doi.org/10.46563/1560-9561-2023-26-6-450-454
EDN: mmmnua
Abstract
Introduction. The review is devoted to the importance of lipids in the nutrition of premature infants with bronchopulmonary dysplasia (BPD). In recent years, the proportion of children born prematurely especially babies with very low and extremely low body weight, has been increasing due to the introduction of reproductive technologies that allow women with various pathologies and health abnormalities having children, as well as the use of modern neonatal intensive care and intensive care facilities. One of the most common diseases in such patients is BPD. An important component of the system of caring for prematurely born infants is adequate nutrition, which plays an important role in the development and maturation of all organs and systems, including lung tissue, changing its morphology. It is important to note that in severe BPD, there is a direct relationship between nutritional status, normal lung function, and psychomotor development of the infant. Therefore, the nutritional needs of premature BPD infants are increased and this imposes special requirements on their admission and individual dietary correction, taking into account all the features of the child’s development and the presence of concomitant pathology. The optimal nutrition for a premature baby is recognized as mother’s milk, which is enriched with breast milk. However, the fat component (the main energy substrate) is either absent in the fortifier, or lipids amounts in to fail to be sufficient. The use of specialized mixtures also does not overlap the caloric content of the diet to provide the growth rate of BPD infant against the background of increased energy needs by 15–25% when compared with patients without BPD) and the necessary restriction of the volume of injected fluid due to the high risk of hypervolemia of the small circulatory circle.
Conclusion. Thus, an additional supply of medium-chain triglycerides seems to be a promising direction that increases the fat component of the diet and, as a result, its energy value in conditions of limiting fluid intake in premature BPD infants.
Contribution:
Basargina M.A., Skvortsova V.A., Kharitonova N.A. — concept and design of the study, writing the text, editing the text;
Basargina M.A., Skvortsova V.A., Illarionova M.S., Pinaeva-Slysh E.L. — collection and processing of material;
Skvortsova V.A., Kharitonova N.A. — statistical processing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgment. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: November 14, 2023
Accepted: November 28, 202
Published: December 27, 2023
About the Authors
Milana A. BasarginaRussian Federation
Vera A. Skvortsova
Russian Federation
Nataliya A. Kharitonova
Russian Federation
MD, PhD, Researcher of the Neonatology and Early childhood laboratory, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: kharitonovan@nczd.ru
Mariya S. Illarionova
Russian Federation
Evgeniya L. Pinaeva-Slysh
Russian Federation
References
1. Glass H.C., Costarino A.T., Stayer S.A., Brett C.M., Cladis F., Davis P.J. Outcomes for extremely premature infants. Anesth. Analg. 2015; 120(6): 1337–51. https://doi.org/10.1213/ane.0000000000000705
2. Binepal N., Lemyre B., Dunn S., Daboval T., Aglipay M., Leduc S., et al. Systematic review and quality appraisal of international guidelines on perinatal care of extremely premature infants. Curr. Pediatr. Rev. 2015; 11(2): 126–34. https://doi.org/10.2174/1573396311666150608125529
3. Van de Pol C., Allegaert K. Growth patterns and body composition in former extremely low birth weight (ELBW) neonates until adulthood: a systematic review. Eur. J. Pediatr. 2020; 179(5): 757–71. https://doi.org/10.1007/s00431-019-03552-z
4. Johnson M.J. Early parenteral nutrition for preterm infants: perhaps more complicated than it first appears. Arch. Dis. Child. Fetal Neonatal Ed. 2022; 107(2): 116–7. https://doi.org/10.1136/archdischild-2021-323072
5. Fusch C., Bauer K., Böhles H.J., Jochum F., Koletzko B., Krawinkel M., et al. Neonatology/Paediatrics – Guidelines on Parenteral Nutrition, Chapter 13. Ger. Med. Sci. 2009; 7: Doc15. https://doi.org/10.3205/000074
6. Hay W.W. Jr. Strategies for feeding the preterm infant. Neonatology. 2008; 94(4): 245–54. https://doi.org/10.1159/000151643
7. Manea A., Boia M., Iacob D., Dima M., Iacob R.E. Benefits of early enteral nutrition in extremely low birth weight infants. Singapore Med. J. 2016; 57(11): 616–8. https://doi.org/10.11622/smedj.2016002
8. Salas A.A., Jerome M., Finck A., Razzaghy J., Chandler-Laney P., Carlo W.A. Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial. Pediatr. Res. 2022; 91(5): 1231–7. https://doi.org/10.1038/s41390-021-01628-x
9. Thébaud B., Goss K.N., Laughon M., Whitsett J.A., Abman S.H., Steinhorn R.H., et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers. 2019; 5(1): 78. https://doi.org/10.1038/s41572-019-0127-7
10. Ovsyannikov D.Yu., Geppe N.A., Malakhov A.B., Degtyareva D.N., eds. Bronchopulmonary Dysplasia [Bronkholegochnaya displaziya]. Moscow; 2020. (in Russian)
11. Dassios T., Williams E.E., Hickey A., Bunce C., Greenough A. Bronchopulmonary dysplasia and postnatal growth following extremely preterm birth. Arch. Dis. Child. Fetal Neonatal Ed. 2021; 106(4): 386–91. https://doi.org/10.1136/archdischild-2020-320816
12. Baud O., Laughon M., Lehert P. Survival without bronchopulmonary dysplasia of extremely preterm infants: a predictive model at birth. Neonatology. 2021; 118(4): 385–93. https://doi.org/10.1159/000515898
13. Skvortsova V.A., Davydova I.V., Fisenko A.P., Pinaeva-Slysh E.L., Borovik T.E., Basargina M.A., et al. Features of the nutritional status of premature infants with bronchopulmonary dysplasia in the first half of life. Pediatriya. Zhurnal im. G.N. Speranskogo. 2021; 100(4): 161–70. https://doi.org/10.24110/0031-403X-2021-100-4-161-170 https://elibrary.ru/wdxjio (in Russian)
14. Kalikkot Thekkeveedu R., Guaman M.C., Shivanna B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir. Med. 2017; 132: 170–7. https://doi.org/10.1016/j.rmed.2017.10.014
15. Foglia E.E., Jensen E.A., Kirpalani H. Delivery room interventions to prevent bronchopulmonary dysplasia in extremely preterm infants. J. Perinatol. 2017; 37(11): 1171–9. https://doi.org/10.1038/jp.2017.74
16. Moschino L., Bonadies L., Baraldi E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. Pediatr. Pulmonol. 2021; 56(11): 3499–508. https://doi.org/10.1002/ppul.25380
17. Savani R.C. Modulators of inflammation in bronchopulmonary dysplasia. Semin. Perinatol. 2018; 42(7): 459–70. https://doi.org/10.1053/j.semperi.2018.09.009
18. Yapicioglu Yildizdas H., Simsek H., Ece U., Ozlu F., Sertdemir Y., Narli N., et al. Effect of short-term morbidities, risk factors and rate of growth failure in very low birth weight preterms at discharge. J. Trop. Pediatr. 2020; 66(1): 95–102. https://doi.org/10.1093/tropej/fmz038
19. Uberos J., Jimenez-Montilla S., Molina-Oya M., García-Serrano J.L. Early energy restriction in premature infants and bronchopulmonary dysplasia: a cohort study. Br. J. Nutr. 2020; 123(9): 1024–31. https://doi.org/10.1017/S0007114520000240
20. Al-Jebawi Y., Agarwal N., Groh Wargo S., Shekhawat P., Mhanna M.J. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J. Neonatal Perinatal Med. 2020; 13(2): 207–14. https://doi.org/10.3233/NPM-190267
21. Huysman W.A., de Ridder M., de Bruin N.C., van Helmond G., Terpstra N., van Goudoever J.B., et al. Growth and body composition in preterm infants with bronchopulmonary dysplasia. Arch. Dis. Child. Fetal Neonatal Ed. 2003; 88(1): 46–51. https://doi.org/10.1136/fn.88.1.f46
22. Rocha G., Ribeiro O., Guimarães H. Fluid and electrolyte balance during the first week of life and risk of bronchopulmonary dysplasia in the preterm neonate. Clinics (Sao Paulo). 2010; 65(7): 663–74. https://doi.org/10.1590/s1807-59322010000700004
23. Malikiwi A.I., Lee Y.M., Davies-Tuck M., Wong F.Y Postnatal nutritional deficit is an independent predictor of bronchopulmonary dysplasia among extremely premature infants born at or less than 28 weeks gestation. Early Hum. Dev. 2019; 131: 29–35. https://doi.org/10.1016/j.earlhumdev.2019.02.005
24. Jensen E.A., Whyte R.K., Schmidt B., Bassler D., Vain N.E., Roberts R.S. Association between intermittent hypoxemia and severe bronchopulmonary dysplasia in preterm infants. Am. J. Respir. Crit. Care Med. 2021; 204(10): 1192–9. https://doi.org/10.1164/rccm.202105-1150OC
25. Hadchouel A., Franco-Montoya M.L., Delacourt C. Altered lung development in bronchopulmonary dysplasia. Birth Defects Res. A Clin. Mol. Teratol. 2014; 100(3): 158–67. https://doi.org/10.1002/bdra.23237
26. Baker C.D., Abman S.H. Impaired pulmonary vascular development in bronchopulmonary dysplasia. Neonatology. 2015; 107(4): 344–51. https://doi.org/10.1159/000381129
27. Sahni M., Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol. Cell. Pediatr. 2021; 8(1): 21. https://doi.org/10.1186/s40348-021-00129-5
28. Simpson S.J., Hall G.L., Wilson A.C. Lung function following very preterm birth in the era of ‘new’ bronchopulmonary dysplasia. Respirology. 2015; 20(4): 535–40. https://doi.org/10.1111/resp.12503
29. Miller J., Tonkin E., Damarell R.A., McPhee A.J., Suganuma M., Suganuma H., et al. A systematic review and meta-analysis of human milk feeding and morbidity in very low birth weight infants. Nutrients. 2018; 10(6): 707. https://doi.org/10.3390/nu10060707
30. Moya F. Preterm nutrition and the lung. World Rev. Nutr. Diet. 2014; 110: 239–52. https://doi.org/10.1159/000358473
31. Martin C.R., Brown Y.F., Ehrenkranz R.A., O’Shea T.M., Allred E.N., Belfort M.B., et al. Nutritional practices and growth velocity in the first month of life in extremely premature infants. Pediatrics. 2009; 124(2): 649–57. https://doi.org/10.1542/peds.2008-3258
32. Perrin T., Pradat P., Larcade J., Masclef-Imbert M., Pastor-Diez B., Picaud J.C. Postnatal growth and body composition in extremely low birth weight infants fed with individually adjusted fortified human milk: a cohort study. Eur. J. Pediatr. 2023; 182(3): 1143–54. https://doi.org/10.1007/s00431-022-04775-3
33. Oczujda M., Miechowicz I., Szymankiewicz-Bręborowicz M., Czech-Szczapa B., Johnson M.J., Szczapa T. Impact of computer calculation program on quality of individualized parenteral nutrition and selected clinical parameters of extremely Low-Birth-Weight Infants. JPEN J. Parenter. Enteral Nutr. 2021; 45(6): 1197–203. https://doi.org/10.1002/jpen.2022
34. Lin Y.C., Chen Y.J., Huang C.C., Shieh C.C. Concentrated preterm formula as a liquid human milk fortifier at initiation stage in extremely low birth weight preterm infants: short term and 2-year follow-up outcomes. Nutrients. 2020; 12(8): 2229. https://doi.org/10.3390/nu12082229
35. Morty R.E. Recent advances in the pathogenesis of BPD. Semin. Perinatol. 2018; 42(7): 404–12. https://doi.org/10.1053/j.semperi.2018.09.001
36. Tinglan Y., Lei W., Jun J., Lijuan M., Jinzhu P., Zhengdong L., et al. Role medium-chain fatty acids in the lipid metabolism of infants. Front. Nutr. 2022; 9(9): 804880. https://doi.org/10.3389/fnut.2022.804880
37. Liu Z., Rochfort S., Cocks B. Milk lipidomics: what we know and what we don’t. Prog. Lipid Res. 2018; 71: 70–85. https://doi.org/10.1016/j.plipres.2018.06.002
38. Miliku K., Duan Q.L., Moraes T.J., Becker A.B., Mandhane P.J., Turvey S.E., et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD cohort study. Am. J. Clin. Nutr. 2019; 110(6): 1370–83. https://doi.org/10.1093/ajcn/nqz229.23,24
39. Grace J.A., Hennessy A.A., Ryan C. A., Ross R.P., Stanton C. Advances in infant formula. Annu. Rev. Food Sci. Technol. 2019; 10: 75–102. https://doi.org/10.1146/annurev-food-081318-104308
40. Lapillonne A. Enteral and parenteral lipid requirements of preterm infants. World Rev. Nutr. Diet. 2014; 110: 82–98. https://doi.org/10.1159/000358460
41. Westerbeek E.A., Slump R.A., Lafeber H.N., Knol J., Georgi G., Fetter WP., et al. The effect of enteral supplementation of specific neutral and acidic oligosaccharides on the faecal microbiota and intestinal microenvironment in preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 2013; 32(2): 269–76. https://doi.org/10.1007/s10096-012-1739-y
42. Mazzocchi A., D’Oria V., De Cosmi V., Bettocchi S., Milani G.P., Silano M., et al. The role of lipids in human milk and infant formulae. Nutrients. 2018; 10(5): 567. https://doi.org/10.3390/nu10050567.23
43. Pereira G.R., Baumgart S., Bennett M.J., Stallings V.A., Georgieff M.K., Hamosh M., et al. Use of high-fat formula for premature infants with bronchopulmonary dysplasia: metabolic, pulmonary, and nutritional studies. J. Pediatr. 1994; 124(4): 605–11. https://doi.org/10.1016/s0022-3476(05)83143-9
44. Hamosh M., Salem N. Jr. Long-chain polyunsaturated fatty acids. Biol. Neonate. 1998; 74(2): 106–20. https://doi.org/10.1159/000014017
45. Tanaka K., Tanaka S., Shah N., Ota E., Namba F. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2022; 35(9): 1730–8. https://doi.org/10.1080/14767058.2020.1769590
46. Li H., Huang Z., Yang C., Han D., Wang X., Qiu X., et al. Association between plasma lysophosphatidic acid levels and bronchopulmonary dysplasia in extremely preterm infants: A prospective study. Pediatr. Pulmonol. 2023; 58(12): 3516–22. https://doi.org/10.1002/ppul.26685.23
47. Wei W., Jin Q., Wang X. Human milk fat substitutes: past achievements and current trends. Prog. Lipid Res. 2019; 74: 69–86. https://doi.org/10.1016/j.plipres.2019.02.001
48. Łoś-Rycharska E., Kieraszewicz Z., Czerwionka-Szaflarska M. Medium chain triglycerides (MCT) formulas in paediatric and allergological practice. Gastroenterol. Rev. 2016; 11(4): 226–31. https://doi.org/10.5114/pg.2016.61374.23,24
49. Jacquot A., Neveu D., Aujoulat F., Mercier G., Marchandin H., Jumas-Bilak E., et al. Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J. Pediatr. 2011; 158(3): 390–6. https://doi.org/10.1016/j.jpeds.2010.09.007
50. Robinson D.T., Caplan M.S. Linking fat intake, the intestinal microbiome, and necrotizing enterocolitis in premature infants. Pediatr. Res. 2015; 77(1-2): 121–6. https://doi.org/10.1038/pr.2014.155
51. Hiltunen H., Löyttyniemi E., Isolauri E., Rautava S. Early nutrition and growth until the corrected age of 2 years in extremely preterm infants. Neonatology. 2018; 113(2): 100–7. https://doi.org/10.1159/000480633
52. Sahin S., Ozdemir T., Katipoglu N., Akcan A.B., Kaynak Turkmen M. Comparison of changes in breast milk macronutrient content during the first month in preterm and term infants. Breastfeed. Med. 2020; 15(1): 56–62. https://doi.org/10.1089/bfm.2019.0141
53. Romo J.A., Arsenault A.B., Laforce-Nesbitt S.S., Bliss J.M., Kumamoto C.A. Minimal effects of medium-chain triglyceride supplementation on the intestinal microbiome composition of premature infants: a single-center pilot study. Nutrients. 2022; 14(10): 2159. https://doi.org/10.3390/nu14102159
54. Khan Z., Morris N., Unterrainer H., Haiden N., Holasek S.J., Urlesberger B. Effect of standardized feeding protocol on nutrient supply and postnatal growth of preterm infants: A prospective study. J. Neonatal Perinatal Med. 2018; 11(1): 11–9. https://doi.org/10.3233/NPM-18179
55. Miliku K., Duan Q.L., Moraes T.J., Becker A.B., Mandhane P.J., Turvey S.E., et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD cohort study. Am. J. Clin. Nutr. 2019; 110(6): 1370–83. https://doi.org/10.1093/ajcn/nqz229
56. Vizzari G., Morniroli D., Alessandretti F., Galli V., Colombo L., Turolo S., et al. Comparative analysis of docosahexaenoic acid (DHA) content in mother’s milk of term and preterm mothers. Nutrients. 2022; 14(21): 4595. https://doi.org/10.3390/nu14214595
57. Tozzi M.G., Moscuzza F., Michelucci A., Scaramuzzo R.T., Cosini C., Chesi F., et al. Nutrition, epigenetic markers and growth in preterm infants. J. Matern. Fetal Neonatal Med. 2021; 34(23): 3963–8. https://doi.org/10.1080/14767058.2019.1702952.27,34,35.
58. Sabel K.G., Lundqvist-Persson C., Bona E., Petzold M., Strandvik B. Fatty acid patterns early after premature birth, simultaneously analysed in mothers’ food, breast milk and serum phospholipids of mothers and infants. Lipids Health Dis. 2009; 8: 20. https://doi.org/10.1186/1476-511X-8-20
59. Hay W.W. Jr., Brown L.D., Denne S.C. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants. World Rev. Nutr. Diet. 2014; 110: 64–81. https://doi.org/10.1159/000358459
60. Lingwood B.E., Al-Theyab N., Eiby Y.A., Colditz P.B., Donovan T.J. Body composition in very preterm infants before discharge is associated with macronutrient intake. Br. J. Nutr. 2020; 123(7): 800–6. https://doi.org/10.1017/S000711451900343X
61. Embleton N.D., Moltu S.J., Lapillonne A., van den Akker C.H.P., Carnielli V., Fusch C., et al. Enteral Nutrition in Preterm Infants (2022): A position paper from the ESPGHAN committee on nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2023; 76(2): 248–68. https://doi.org/10.1097/MPG.0000000000003642
62. Arsenault A.B., Gunsalus K.T.W., Laforce-Nesbitt S.S., Przystac L., DeAngelis E.J., Hurley M.E., et al. Dietary supplementation with medium-chain triglycerides reduces candida gastrointestinal colonization in preterm infants. Pediatr. Infect. Dis. J. 2019; 38(2): 164–8. https://doi.org/10.1097/INF.0000000000002042
Review
For citations:
Basargina M.A., Skvortsova V.A., Kharitonova N.A., Illarionova M.S., Pinaeva-Slysh E.L. Role of lipids in nutrition of premature babies with bronchopulmonary dysplasia. Russian Pediatric Journal. 2023;26(6):450-454. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-6-450-454. EDN: mmmnua