Genotype-phenotype correlation in siblings with cystic fibrosis
https://doi.org/10.46563/1560-9561-2023-26-3-159-167
EDN: xnbjey
Abstract
Introduction. Despite the genetic counseling, families with cystic fibrosis (CF) patients and modern possibilities of prenatal molecular genetic screening, the occurrence of CF in more than one child in a family is not rare. The same genotype is expected to determine the specific phenotype in CF patients, especially in siblings. However, broad clinical heterogeneity could indicate the influence of secondary genetic factors on the course of the disease.
The aim of the study is to examine the genotype-phenotype correlation and disease course features in CF siblings, including twins.
Materials and methods. A clinical retrospective cohort observational study included fifty three sibs (23 boys, 30 girls) aged from 6 months to 17 years 9 months (median age of 8.3 (4.8–12.9) years, age difference 5 ± 2 years) with a diagnosis of CF confirmed by molecular genetic methods. Group 1 consisted of 9 twin pairs (3 — monozygotic, 6 — dizygotic), group 2 — 35 complete sibs.
Results. The mean age of diagnosis for older sibs is 2.5 years (8 months — 9,8 years; min — 1 months, max — 17 years) and for younger sibs — 8.5 months (1.3 months–3 years). Chronologically, the onset of CF was registered earlier in younger sibs than in older sibs in 3 (16.7%). In 6 (22.2%) of families, the pancreatic status of sibs varied from normal function to severe pancreatic insufficiency, with the occurrence of pancreatitis observed in only 4 (7.6%) patients. In 21 (77.8%) families with sibs infected by P.aeruginosa, 5 (23.8%) had a simultaneous primary culture of the pathogen, 8 (38,1%) had culture in both children but with an interval from 1 month to 9.5 years (Ме: 3.2 (5 months–4.9 years), and in 8 (38.1%) had culture in only 1 sibling. All younger sibs had the primary contamination at an earlier age with a 5.3 year (2–6.6 years;) difference. In 10 (37.0%) of the families, the pulmonary function of the sibs was variable. The number of bronchopulmonary exacerbations per year ranged in 8 (29.6%) of sib pairs and averaged 1.3 ± 0.5 in older sibs, 1.1 ± 0.3 in younger sibs, and 1.7 ± 1.3 in twins. The severity of hepatic involvement varied in 9 (33.3%) of sib pairs: no morbidity in 6 (33.3%), cystic fibrosis-associated fibrosis in 7 (38.9%), and cirrhosis with portal hypertension in 5 (27.8%).
Conclusion. CF siblings, despite the same genotype, similar environmental conditions, and high risk of cross-infection, are characterized by wide phenotypic heterogeneity. Aside from the pathogenic CFTR variants, there are other genetic (modifier genes) and epigenetic (microRNA, DNA methylation) factors that could contribute to the clinical features of cystic fibrosis.
Contribution.
Krasnovidova A.E., Simonova О.I., Chernevich V.P. — research concept and design of the study;
Krasnovidova A.E., Pakhomov A.V., Reykh А.P. — сollecting and processing of the material;
Krasnovidova A.E. — statistical processing;
Krasnovidova A.E. Pushkov А.А. — text writing;
Krasnovidova A.E., Pushkov А.А., Simonova О.I. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgement. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: April 18, 2023
Accepted: May 16, 2023
Published: June 27, 2023
About the Authors
Anatasiya E. KrasnovidovaRussian Federation
For correspondence: Anastasiya E. Krasnovidova, assistant of the Department of paediatrics and paediatric rheumatology of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russian Federation
e-mail: dr.krasnovidova@yandex.ru
Olga I. Simonova
Russian Federation
Vera P. Chernevich
Russian Federation
Aleksandr V. Pakhomov
Russian Federation
Aleksandra P. Reykh
Russian Federation
Aleksandr A. Pushkov
Russian Federation
References
1. Kondrat’eva E.I., Kashirskaya N.Yu., Kapranov N.I., eds. Cystic Fibrosis: Definition, Diagnostic Criteria, Therapy. National Consensus [Mukovistsidoz: opredelenie, diagnosticheskie kriterii, terapiya. Natsional’nyy konsensus]. Moscow: Kompaniya BORGES; 2019. (in Russian)
2. Simonova O.I., Gorinova Yu.V., Chernevich V.P. Cystic fibrosis: a breakthrough in 21st century therapy. Rossiyskiy pediatricheskiy zhurnal. 2020; 23(1): 35–41. https://doi.org/10.18821/1560-9561-2020-23-1-35-41 https://elibrary.ru/ltytdg (in Russian)
3. Kondrat’eva E.I., Krasovskiy S.A., Starinova M.A., Voronkova A.Yu., Amelina E.L., Kashirskaya N.Yu., et al. Register of Patients with Cystic Fibrosis in the Russian Federation – 2020 [Registr bol’nykh mukovistsidozom v Rossiyskoy Federatsii – 2020 god]. Moscow: Medpraktika-M; 2022. (in Russian)
4. Kiseleva A., Klimushina M., Sotnikova E., Skirko O., Divashuk M., Kurilova O., et al. Cystic fibrosis polymorphic variants in a Russian population. Pharmgenomics Pers. Med. 2020; 13: 679–86. https://doi.org/10.2147/PGPM.S278806
5. Scotet V., L’Hostis C., Férec C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR gene discovery. Genes (Basel). 2020; 11(6): 589. https://doi.org/10.3390/genes11060589
6. Kashirskaya N.Yu., Kapranov N.I., Kondrat’eva E.I., eds. Cystic Fibrosis [Mukovistsidoz]. Moscow: Medpraktika-M; 2021. (in Russian)
7. Szczesniak R., Rice J.L., Brokamp C., Ryan P., Pestian T., Ni Y., et al. Influences of environmental exposures on individuals living with cystic fibrosis. Expert Rev. Respir. Med. 2020; 14(7): 737–48. https://doi.org/10.1080/17476348.2020.1753507
8. Somayaji R., Ramos K.J., Kapnadak S.G., Aitken M.L., Goss C.H. Common clinical features of CF (respiratory disease and exocrine pancreatic insufficiency). Presse Med. 2017; 46(6 Pt. 2): e109–24. https://doi.org/10.1016/j.lpm.2017.03.021
9. Lavie M., Shemer O., Sarouk I., Bar-Aluma B.E., Dagan A., Efrati O., et al. Several siblings with Cystic Fibrosis as a risk factor for poor outcome. Respir Med. 2015; 109(1): 74–8. https://doi.org/10.1016/j.rmed.2014.11.012
10. Salvatore F., Scudiero O., Castaldo G. Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes. Am. J. Med. Genet. 2002; 111(1): 88–95. https://doi.org/10.1002/ajmg.10461
11. Geborek A., Hjelte L. Association between genotype and pulmonary phenotype in cystic fibrosis patients with severe mutations. J. Cyst. Fibros. 2011; 10(3): 187–92. https://doi.org/10.1016/j.jcf.2011.01.005
12. Ekinci İ.B., Hızal M., Emiralioğlu N. Differentially expressed genes associated with disease severity in siblings with cystic fibrosis. Pediatr. Pulmonol. 2020; 56(5): 910–20. https://doi.org/10.1002/ppul.25237
13. Sepahzad A., Morris-Rosendahl D.J., Davies J.C. Cystic fibrosis lung disease modifiers and their relevance in the new era of precision medicine. Genes (Basel). 2021; 12(4): 562. https://doi.org/10.3390/genes12040562
14. Vanscoy L.L., Blackman S.M., Collaco J.M., Bowers A., Lai T., Naughton K., et al. Heritability of lung disease severity in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007; 175(10): 1036–43. https://doi.org/10.1164/rccm.200608-1164OC
15. Slieker M.G., van den Berg J.M., Kouwenberg J., van Berkhout F.T., Heijerman H.G., van der Ent C.K. Long-term effects of birth order and age at diagnosis in cystic fibrosis: a sibling cohort study. Pediatr. Pulmonol. 2010; 45(6): 601–7. https://doi.org/10.1002/ppul.21227
16. Makarova M., Nemtsova M., Danishevich A., Chernevskiy D., Belenikin M., Krinitsina A., et al. The CFTR gene germline heterozygous pathogenic variants in Russian patients with malignant neoplasms and healthy carriers: 11,800 WGS results. Int. J. Mol. Sci. 2023; 24(9): 7940. https://doi.org/10.3390/ijms24097940
17. Marson F.A.L., Bertuzzo C.S., Ribeiro J.D. Classification of CFTR mutation classes. Lancet Respir. Med. 2016; 4(8): e37–8. https://doi.org/10.1016/S2213-2600(16)30188-6
18. Gorinova Yu.V., Savost’yanov K.V., Pushkov A.A., Nikitin A.G., Pen’kov E.L., Krasovskiy S.A., et al. Genotype-phenotype correlations of the course of cystic fibrosis in Russian children. The first description of eleven new mutations. Voprosy sovremennoy pediatrii. 2018; 17(1): 61–9. https://doi.org/10.15690/vsp.vl7il.l856 https://elibrary.ru/yugvsy (in Russian)
19. Petrova N.V., Kashirskaya N.Y., Vasilyeva T.A., Kondratyeva E.I., Zhekaite E.K., Voronkova A.Y., et al. Analysis of CFTR mutation spectrum in ethnic Russian cystic fibrosis patients. Genes (Basel). 2020; 11(5): 554. https://doi.org/10.3390/genes11050554
20. Brown S.D., White R., Tobin P. Keep them breathing: Cystic fibrosis pathophysiology, diagnosis, and treatment. JAAPA. 2017; 30(5): 23–7. https://doi.org/10.1097/01.JAA.0000515540.36581.92
21. Lopes-Pacheco M., Pedemonte N., Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert. Opin. Drug Discov. 2021; 16(8): 897–913. https://doi.org/10.1080/17460441.2021.1912732
22. Bardin E., Pastor A., Semeraro M., Golec A., Hayes K., Chevalier B., et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021; 213: 113195. https://doi.org/10.1016/j.ejmech.2021.113195
23. King J.A., Nichols A.L., Bentley S., Carr S.B., Davies J.C. An update on CFTR modulators as new therapies for cystic fibrosis. Paediatr Drugs. 2022; 24(4): 321–33. https://doi.org/10.1007/s40272-022-00509-y
24. Yeh H.I., Sutcliffe K.J., Sheppard D.N., Hwang T.C. CFTR modulators: from mechanism to targeted therapeutics. In: Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer; 2022. https://doi.org/10.1007/164_2022_597
25. Kutsev S.I., Izhevskaya V.L., Kondrat’eva E.I. Targeted therapy for cystic fibrosis. Pul’monologiya. 2021; 31(2): 226–37. https://doi.org/10.18093/0869-0189-2021-31-2-226-236 https://elibrary.ru/zkelnh (in Russian)
26. Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front. Pharmacol. 2020; 10: 1662. https://doi.org/10.3389/fphar.2019.01662
27. Villanueva G., Marceniuk G., Murphy M.S., Walshaw M., Cosulich R. Guideline Committee. Diagnosis and management of cystic fibrosis: summary of NICE guidance. BMJ. 2017; 359: j4574. https://doi.org/10.1136/bmj.j4574
28. Picard E., Aviram M., Yahav Y., Rivlin J., Blau H., Bentur L., et al. Familial concordance of phenotype and microbial variation among siblings with CF. Pediatr. Pulmonol. 2004; 38(4): 292–7. https://doi.org/10.1002/ppul.20111
29. Arrudi-Moreno M., García-Romero R., Samper-Villagrasa P., Sánchez-Malo M.J., Martin-de-Vicente C. Neonatal cystic fibrosis screening: Analysis and differences in immunoreactive trypsin levels in newborns with a positive screen. An. Pediatr. (Engl. Ed.). 2021; 95(1): 11–7. https://doi.org/10.1016/j.anpede.2020.04.022
30. Munck A., Houssin E., Roussey M. The importance of sweat testing for older siblings of patients with cystic fibrosis identified by newborn screening. J. Pediatr. 2009; 155(6): 928e30. https://doi.org/10.1016/j.jpeds.2009.06.018
31. Lui J.K., Kilch J., Fridlyand S., Dheyab A., BielickKotkowski C. Non-classic cystic fibrosis: the value in family history. Am. J. Med. 2017; 130(8): e333–4. https://doi.org/10.1016/j.amjmed.2017.02.023
32. Singh V.K., Schwarzenberg S.J. Pancreatic insufficiency in cystic fibrosis. J. Cyst. Fibros. 2017; 16(Suppl. 2): 70–8. https://doi.org/10.1016/j.jcf.2017.06.011
33. Ooi C.Y., Durie P.R. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J. Cyst. Fibros. 2012; 11(5): 355–62. https://doi.org/10.1016/j.jcf.2012.05.001
34. De Boeck K., Weren M., Proesmans M., Kerem E. Pancreatitis among patients with cystic fibrosis: correlation with pancreatic status and genotype. Pediatrics. 2005; 115(4): 463–9. https://doi.org/10.1542/peds.2004-1764
35. Marson F.A.L., Bertuzzo C.S., de Araujo T.K., Hortencio T.D.R., Ribeiro A.F., Ribeiro J.D. Pancreatic insufficiency in cystic fibrosis: influence of inflammatory response genes. Pancreas. 2018; 47(1): 99–109. https://doi.org/10.1097/MPA.0000000000000963
36. Kashirskaya N.Yu., Goryainova A.V., Semykin S.Yu., Petrova N.V., Khavkin A.I., Zinchenko R.A. Cystic fibrosis-associated pancreatitis: the implementation of genotype-phenotype correlation in the development of acute and chronic pancreatitis. Voprosy detskoy dietologii. 2020; 18(3): 65–74. https://doi.org/10.20953/1727-5784-2020-3-65-74 https://elibrary.ru/ygowni (in Russian)
37. Harun S.N., Wainwright C., Klein K., Hennig S. A systematic review of studies examining the rate of lung function decline in patients with cystic fibrosis. Paediatr. Respir. Rev. 2016; 20: 55–66. https://doi.org/10.1016/j.prrv.2016.03.002
38. Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic pseudomonas aeruginosa infection in children with cystic fibrosis. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(3): 50–3. https://elibrary.ru/uaxnwb (in Russian)
39. Laurans M., Arion A., Fines-Guyon M., Regeasse A., Brouard J., Leclercq R., et al. Pseudomonas aeruginosa and cystic fibrosis: first colonization to chronic infection. Arch. Pediatr. 2006; 13(Suppl. 1): S22–9. (in French)
40. Smirnov I.E., Tarasova O.V., Lukina O.F., Kustova O.V., Sorokina T.E., Simonova O.I. Structural and functional state of the lungs in cystic fibrosis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; 18(2): 11–7. https://elibrary.ru/twinwz (in Russian)
41. Debray D., Corvol H., Housset C. Modifier genes in cystic fibrosis related liver disease. Curr. Opin. Gastroenterol. 2019; 35(2): 88–92. https://doi.org/10.1097/MOG.000000000000050830
42. Dana J., Girard M., Debray D. Hepatic manifestations of cystic fibrosis. Curr. Opin. Gastroenterol. 2020; 36(3): 192–8. https://doi.org/10.1097/MOG.0000000000000624
43. Enaud R., Frison E., Missonnier S., Fischer A., de Ledinghen V., Perez P., et al. Cystic fibrosis and noninvasive liver fibrosis assessment methods in children. Pediatr Res. 2022; 91(1): 223–9. https://doi.org/10.1038/s41390-021-01427-4
44. Dana J., Debray D., Beaufrère A., Hillaire S., Fabre M., Reinhold C., et al. Cystic fibrosis-related liver disease: Clinical presentations, diagnostic and monitoring approaches in the era of CFTR modulator therapies. J. Hepatol. 2022; 76(2): 420–34. https://doi.org/10.1016/j.jhep.2021.09.042
45. Sakiani S., Kleiner D.E., Heller T., Koh C. Hepatic manifestations of cystic fibrosis. Clin. Liver Dis. 2019; 23(2): 263–77. https://doi.org/10.1016/j.cld.2018.12.008
46. Sherwood J.S., Ullal J., Kutney K., Hughan K.S. Cystic fibrosis related liver disease and endocrine considerations. J. Clin. Transl. Endocrinol. 2021; 27: 100283. https://doi.org/10.1016/j.jcte.2021.100283
47. Palaniappan S.K., Than N.N., Thein A.W., van Mourik I. Interventions for preventing and managing advanced liver disease in cystic fibrosis. Cochrane Database Syst. Rev. 2020; 3(3): CD012056. https://doi.org/10.1002/14651858.CD012056.pub3
48. Paranjapye A., Ruffin M., Harris A., Corvol H. Genetic variation in CFTR and modifier loci may modulate cystic fibrosis disease severity. J. Cyst. Fibros. 2020; 19(Suppl. 1): 10–4. https://doi.org/10.1016/j.jcf.2019.11.001
49. Ramsey M.L., Wellner M.R., Porter K., Kirkby S.E., Li S.S., Lara L.F., et al. Cystic fibrosis patients on cystic fibrosis transmembrane conductance regulator modulators have a reduced incidence of cirrhosis. World J. Hepatol. 2022; 14(2): 411–9. https://doi.org/10.4254/wjh.v14.i2.411
50. Horn T., Ludwig M., Eickmeier O., Neerinex A.H., Maitland-van der Zee A.H., Smaczny C., et al. Impact of a gap junction protein alpha 4 variant on clinical disease phenotype in F508del homozygous patients with cystic fibrosis. Front. Genet. 2020; 11: 570403. https://doi.org/10.3389/fgene.2020.570403
51. Papi C., Gasparello J., Zurlo M., Cosenza L.C., Gambari R., Finotti A. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is under post-transcriptional control of microRNAs: Analysis of the effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p. Noncoding RNA. 2023; 9(2): 29. https://doi.org/10.3390/ncrna9020029
52. Plotnikova O.M., Skoblov M.Yu. MicroRNA role in hereditary genetic diseases. Meditsinskaya genetika. 2020; 19(9): 5–17. https://doi.org/10.25557/2073-7998.2020.09.5-17 https://elibrary.ru/pphppu (in Russian)
53. Fabbri E., Borgatti M., Montagner G., Bianchi N., Finotti A., Lampronti I., et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am. J. Respir. Cell Mol. Biol. 2014; 50(6): 1144–55. https://doi.org/10.1165/rcmb.2013-0160oc
54. Scott M., De Sario A. DNA methylation changes in cystic fibrosis: Cause or consequence? Clin. Genet. 2020; 98(1): 3–9. https://doi.org/10.1111/cge.13731
55. Schamschula E., Hagmann W., Assenov Y., Hedtfeld S., Farag A.K., Roesner L.M., et al. Immunotyping of clinically divergent p.Phe508del homozygous monozygous cystic fibrosis twins. J. Cyst. Fibros. 2021; 20(1): 149–53. http://doi.org/ 10.1016/j.jcf.2020.06.009
Review
For citations:
Krasnovidova A.E., Simonova O.I., Chernevich V.P., Pakhomov A.V., Reykh A.P., Pushkov A.A. Genotype-phenotype correlation in siblings with cystic fibrosis. Russian Pediatric Journal. 2023;26(3):159-167. (In Russ.) https://doi.org/10.46563/1560-9561-2023-26-3-159-167. EDN: xnbjey