Preview

Российский педиатрический журнал

Расширенный поиск

Факторы питания в патогенезе и лечении псориаза у детей

https://doi.org/10.46563/1560-9561-2021-24-5-348-355

EDN: fkfsoz

Аннотация

Обзор посвящён анализу различных факторов питания в патогенезе псориаза. Определено значение как генетических, так и средовых факторов в механизмах формирования псориатической болезни. Авторы считают, что влияние питания на патогенетические звенья псориаза ещё недостаточно изучено и недооценивается. В клинических рекомендациях по ведению больных псориазом нет указаний на необходимость консультаций диетолога и использование диетических рекомендаций. Целью обзора является проведение анализа современных данных о значимости различных факторов питания в формировании псориатической болезни, патогенезе её осложнённого течения, а также эффективности диетических воздействий при лечении этой категории больных. Установлено, что изменения питания и использование биологически активных добавок к пище может иметь определённый эффект в комплексной терапии заболевания. Обсуждены возможности диетотерапии у пациентов с псориазом и метаболическим синдромом. Показано, что необходимо дальнейшее улучшение доказательной базы эффективности диетических методов в стратегии ведения больных псориазом, особенно пациентов детского возраста.

Участие авторов:
Макарова С.Г. — концепция, дизайн исследования, сбор и обработка материала, написание текста, редактирование;
Пронина И.Ю. — сбор и обработка материала, написание текста, редактирование.
Все авторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Финансирование. Исследование не имело финансовой поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила 15.10.2021
Принята к печати 28.10.2021
Опубликована 15.11.2021

 

Об авторах

Светлана Геннадиевна Макарова
ФГАУ «Национальный медицинский исследовательский центр здоровья детей»; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова
Россия

Доктор мед. наук, руководитель центра профилактической педиатрии ФГАУ «НМИЦ здоровья детей»; проф. каф. многопрофильной клинической подготовки факультета фундаментальной медицины ФГБОУ ВО «МГУ им. М.В. Ломоносова»

e-mail: sm27@yandex.ru



Ирина Юрьевна Пронина
ФГАУ «Национальный медицинский исследовательский центр здоровья детей»; ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

Мл. науч. сотр. центра профилактической педиатрии, врач-диетолог, врач-эндокринолог

e-mail: krapchatovaiv@yandex.ru; pronina.iiu@nczd.ru



Список литературы

1. Owczarczyk-Saczonek A., Purzycka-Bohdan D., Nedoszytko B., Reich A., Szczerkowska-Dobosz A., Bartosiñska J., et al. Pathogenesis of psoriasis in the «omic» era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol. Alergol. 2020; 37(4): 452-67. https://doi.org/10.5114/ada.2020.98284

2. Kanda N., Hoashi T., Saeki H. Nutrition and psoriasis. Int. J. Mol. Sci. 2020; 21(15): 5405. https://doi.org/10.3390/ijms21155405

3. Singh S., Pradhan D., Puri P., Rames V., Aggarwal S., Nayek A., et al. Genomic alterations driving psoriasis pathogenesis. Gene. 2019; 683: 61-71. https://doi.org/10.1016/j.gene.2018.09.042

4. Roszkiewicz M., Dopytalska K., Szymańska E., Jakimiuk A., Walecka I. Environmental risk factors and epigenetic alternations in psoriasis. Ann. Agric. Environ. Med. 2020; 27(3): 335-42. https://doi.org/10.26444/aaem/112107

5. Bronckers I.M., Paller A.S., van Geel M.J., van de Kerkhof P.C., Seyger M.M. Psoriasis in Children and Adolescents: Diagnosis, Management and Comorbidities. Paediatr. Drugs. 2015; 17(5): 373-84. https://doi.org/10.1007/s40272-015-0137-1

6. Yu S., Wu X., Zhou Y., Sheng L., Jena P.K., Han D., et al. A western diet, but not a high-fat and low-sugar diet, predisposes mice to enhanced susceptibility to imiquimod-induced psoriasiform dermatitis. J. Invest. Dermatol. 2019; 139(6): 1404-7. https://doi.org/10.1016/j.jid.2018.12.002

7. Jensen P., Skov L. Psoriasis and obesity. Dermatology. 2016; 232(6): 633-9. https://doi.org/10.1159/000455840

8. Honda T., Kabashima K. Current understanding of the role of dietary lipids in the pathophysiology of psoriasis. J. Dermatol. Sci. 2019; 94(3): 314-20. https://doi.org/10.1016/j.jdermsci.2019.05.003

9. Badaoui A., Tounian P., Mahé E. Psoriasis and metabolic and cardiovascular comorbidities in children: A systematic review. Arch. Pediatr. 2019; 26(2): 86-94. https://doi.org/10.1016/j.arcped.2018.12.005

10. Rigopoulos D., Baran R., Chiheb S., Daniel C.R. 3rd., Di Chiacchio N., Gregoriou S., et al. Recommendations for the definition, evaluation, and treatment of nail psoriasis in adult patients with no or mild skin psoriasis: A dermatologist and nail expert group consensus. J. Am. Acad. Dermatol. 2019; 81(1): 228-40. https://doi.org/10.1016/j.jaad.2019.01.072

11. Myśliwiec H., Baran A., Harasim-Symbor E., Myśliwiec P., Milewska A.J., Chabowski A., et al. Serum fatty acid profile in psoriasis and its comorbidity. Arch. Dermatol. Res. 2017; 309(5): 371-80. https://doi.org/10.1007/s00403-017-1748-x

12. Kong W., Yen J.H., Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigenspecific Th1/Th17 dierentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2011; 25(5): 872-82. https://doi.org/10.1016/j.bbi.2010.09.012

13. Sawada Y., Honda T., Nakamizo S., Otsuka A., Ogawa N., Kobayashi Y., et al. Resolvin E1 attenuates murine psoriatic dermatitis. Sci. Rep. 2018; 8(1): 11873. https://doi.org/10.1038/s41598-018-30373-1

14. Xu J., Duan X., Hu F., Poorun D., Liu X, Wang X., et al. Resolvin D1 attenuates imiquimod-induced mice psoriasiform dermatitis through MAPKs and NF-B pathways. J. Dermatol. Sci. 2018; 89(2): 127-35. https://doi.org/10.1016/j.jdermsci.2017.10.016

15. Ueharaguchi Y., Honda T., Kusuba N., Hanakawa S., Adachi A., Sawada Y., et al. Thromboxane A(2) facilitates IL-17A production from V 4(+) T cells and promotes psoriatic dermatitis in mice. J. Allergy Clin. Immunol. 2018; 142(2): 680-3. https://doi.org/10.1016/j.jaci.2018.01.054

16. Schirmer C., Klein C., von Bergen M., Simon J.C., Saalbach A. Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood. 2010; 116(10): 1715-25. https://doi.org/10.1182/blood-2010-01-263509

17. Nakajima A., Kaga N., Nakanishi Y., Ohno H., Miyamoto J., Kimura I., et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 2017; 199(10): 3516-24. https://doi.org/10.4049/jimmunol.1700248

18. Bhatt B., Zeng P., Zhu H., Sivaprakasam S., Li S., Xiao H., et al. Gpr109a limits microbiota-induced IL-23 production to constrain ILC3-Mediated colonic inflammation. J. Immunol. 2018; 200(8): 2905-14. https://doi.org/10.4049/jimmunol.1701625

19. Keshari S., Wang Y., Herr D.R., Wang S.M., Yang W.C., Chuang T.H., et al. Skin cutibacterium acnes mediates fermentation to suppress the calcium phosphate-induced itching: A butyric acid derivative with potential for uremic pruritus. J. Clin. Med. 2020; 9(2): 312. https://doi.org/10.3390/jcm9020312

20. Schwarz A., Philippsen R., Schwarz T. Induction of regulatory T cells and correction of cytokine disbalance by short-chain fatty acids: Implications for psoriasis therapy. J. Invest. Dermatol. 2021; 141(1): 95-104.e2. https://doi.org/10.1016/j.jid.2020.04.031

21. Krejner A., Bruhs A., Mrowietz U., Wehkamp U., Schwarz T., Schwarz A. Decreased expression of G-protein-coupled receptors GPR43 and GPR109a in psoriatic skin can be restored by topical application of sodium butyrate. Arch. Dermatol. Res. 2018; 310(9): 751-8. https://doi.org/10.1007/s00403-018-1865-1

22. Leon Carrion S., Sutter C.H., Sutter T.R. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation. Exp. Dermatol. 2014; 23(3): 211-4. https://doi.org/10.1111/exd.12333

23. Afifi L., Danesh M.J., Lee K.M., Beroukhim K., Farahnik B., Ahn R.S., et al. Dietary behaviors in psoriasis: Patient-reported outcomes from a U.S. National Survey. Dermatol. Ther. (Heidelb.). 2017; 7(2): 227-42. https://doi.org/10.1007/s13555-017-0183-4

24. Sohrabi M., Alahgholi-Hajibehzad M., Gholami Mahmoodian Z., Hosseini Siyar S.A., Zamani A. Effect of cinnamon and turmeric aqueous extracts on serum Interleukin-17F level of high fructose-fed rats. Iran. J. Immunol. 2018; 15(1): 38-46.

25. Shi Z., Wu X., Yu S., Huynh M., Jena P.K., Nguyen M., et al. Short-term exposure to a western diet induces psoriasiform dermatitis by promoting accumulation of IL-17A-Producing T Cells. J. Investig. Dermatol. 2020; 140(9): 1815-23. https://doi.org/10.1016/j.jid.2020.01.02

26. Agus A., Denizot J., Thévenot J., Martinez-Medina M., Massier S., Sauvanet P., et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 2016; 6: 19032. https://doi.org/10.1038/srep19032

27. Wahlström A., Sayin S.I., Marschall H.U., Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016; 24(1): 41-50. https://doi.org/10.1016/j.cmet.2016.05.005

28. Kuo S.M. The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv. Nutr. 2013; 4(1): 16-28. https://doi.org/10.3945/an.112.003046

29. Nofrarías M., Martínez-Puig D., Pujols J., Majó N., Pérez J.F. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 2007; 23(11-12): 861-70. https://doi.org/10.1016/j.nut.2007.08.016

30. Takahashi M., Takahashi K., Abe S., Yamada K., Suzuki M., Masahisa M., et al. Improvement of psoriasis by alteration of the gut environment by oral administration of fucoidan from Cladosiphon okamuranus. Mar. Drugs. 2020; 18(3): 154. https://doi.org/10.3390/md18030154

31. Kechichian E., Ezzedine K. Vitamin D and the skin: An update for dermatologists. Am. J. Clin. Dermatol. 2018; 19(2): 223-35. https://doi.org/10.1007/s40257-017-0323-8

32. Коденцова В.М., Вржесинская О.А., Рисник Д.В., Никитюк Д.Б., Тутельян В.А. Обеспеченность населения России микронутриентами и возможности ее коррекции. Состояние проблемы. Вопросы питания. 2017; 86(4): 113-24. https://doi.org/10.24411/0042-88

33. Osmancevic A., Landin-Wilhelmsen K., Larkö O., Wennberg A.M., Krogstad A.L. Vitamin D production in psoriasis patients increases less with narrowband than with broadband ultraviolet B phototherapy. Photodermatol. Photoimmunol. Photomed. 2009; 25(3): 119-23. https://doi.org/10.1111/j.1600-0781.2009.00418.x

34. Смирнова Г.И., Румянцев Р.Е. Витамин D и аллергические болезни у детей. Российский педиатрический журнал. 2017; 20(3): 166-72. https://doi.org/10.46563/1560-9561-2017-20-3-166-172

35. Anderson J., Do L.A.H., Toh Z.Q., Hoe E., Reitsma A., Mulholland K., et al. Vitamin D induces differential effects on inflammatory responses during bacterial and/or viral stimulation of human peripheral blood mononuclear cells. Front. Immunol. 2020; 11: 602. https://doi.org/10.3389/fimmu.2020.00602

36. Ni C., Gan X., Li X., Sun H., Chen Z., Lu H. Vitamin D alleviates acute graft-versus-host disease through promoting the generation of Foxp3(+) T cells. Ann. Transl. Med. 2019; 7(23): 748. https://doi.org/10.21037/atm.2019.11.102

37. van de Lagemaat E.E., de Groot L., van den Heuvel E. Vitamin B(12) in relation to oxidative stress: A systematic review. Nutrients. 2019; 11(2): 482. https://doi.org/10.3390/nu11020482

38. Yamashiki M., Nishimura A., Kosaka Y. Effects of methylcobalamin (vitamin B12) on in vitro cytokine production of peripheral blood mononuclear cells. J. Clin. Lab. Immunol. 1992; 37(4): 173-82.

39. Del Duca E., Farnetani F., De Carvalho N., Bottoni U., Pellacani G., Nisticò S.P. Superiority of a vitamin B(12)-containing emollient compared to a standard emollient in the maintenance treatment of mild-to-moderate plaque psoriasis. Int. J. Immunopathol. Pharmacol. 2017; 30(4): 439-44. https://doi.org/10.1177/0394632017736674

40. Baker H., Comaish J.S. Is vitamin B12 of value in psoriasis? Br. Med. J. 1962; 2(5321): 1729-30. https://doi.org/10.1136/bmj.2.5321.1729

41. Reichrath J., Lehmann B., Carlberg C., Varani J., Zouboulis C.C. Vitamins as hormones. Horm. Metab. Res. 2007; 39(2): 71-84. https://doi.org/10.1055/s-2007-958715

42. Khalil S., Bardawil T., Stephan C., Darwiche N., Abbas O., Kibbi A.G., et al. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J. Dermatolog. Treat. 2017; 28(8): 684-96. https://doi.org/10.1080/09546634.2017.1309349

43. Kang S.G., Lim H.W., Andrisani O.M., Broxmeyer H.E., Kim C.H. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007; 179(6): 3724-33. https://doi.org/10.4049/jimmunol.179.6.3724

44. Xiao S., Jin H., Korn T., Liu S.M., Oukka M., Lim B., et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 2008; 181(4): 2277-84. https://doi.org/10.4049/jimmunol.181.4.2277

45. Yamashita H., Morita T., Ito M., Okazaki S., Koto M., Ichikawa Y., et al. Dietary habits in Japanese patients with psoriasis and psoriatic arthritis: Low intake of meat in psoriasis and high intake of vitamin A in psoriatic arthritis. J. Dermatol. 2019; 46(9): 759-69. https://doi.org/10.1111/1346-8138.15032

46. Pazyar N., Yaghoobi R. Soybean: A potential antipsoriasis agent. Jundishapur J. Nat. Pharm. Prod. 2015; 10(1): e20924. https://doi.org/10.17795/jjnpp-20924

47. Wang A., Wei J., Lu C., Chen H., Zhong X., Lu Y., et al. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-B-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019; 69: 270-8. https://doi.org/10.1016/j.intimp.2019.01.054

48. Smolińska E., Węgrzyn G., Gabig-Cimińska M. Genistein modulates gene activity in psoriatic patients. Acta Biochim. Pol. 2019; 66(1): 101-10. https://doi.org/10.18388/abp.2018_2772

49. Youn H.S., Lim H.J., Choi Y.J., Lee J.Y., Lee M.Y., Ryu J.H. Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int. Immunopharmacol. 2008; 8(3): 495-501. https://doi.org/10.1016/j.intimp.2007.12.008

50. Wacewicz M., Socha K., Soroczyńska J., Niczyporuk M., Aleksiejczuk P., Ostrowska J., et al. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study. J. Trace Elem. Med. Biol. 2017; 44: 109-14. https://doi.org/10.1016/j.jtemb.2017.06.008

51. Constante M., Fragoso G., Calvé A., Samba-Mondonga M., Santos M.M. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front. Microbiol. 2017; 8: 1809. https://doi.org/10.3389/fmicb.2017.01809

52. Alesa D.I., Alshamrani H.M., Alzahrani Y.A., Alamssi D.N., Alzahrani N.S., Almohammadi M.E. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J. Family Med. Prim. Care. 2019; 8(11): 3496-503. https://doi.org/10.4103/jfmpc.jfmpc_709_19

53. Ogawa M., Saiki A., Matsui Y., Tsuchimoto N., Nakakita Y., Takata Y., et al. Effects of oral intake of heat-killed Lactobacillus brevis SBC8803 (SBL88™) on dry skin conditions: A randomized, double-blind, placebo-controlled study. Exp. Ther. Med. 2016; 12(6): 3863-72. https://doi.org/10.3892/etm.2016.3862

54. Guéniche A., Benyacoub J., Buetler T.M., Smola H., Blum S. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur. J. Dermatol. 2006; 16(5): 511-7.

55. Scher J.U., Ubeda C., Artacho A., Attur M., Isaac S., Reddy S.M., et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015; 67(1): 128-39. https://doi.org/10.1002/art.38892

56. Eppinga H., Sperna Weiland C.J., Thio H.B., van der Woude C.J., Nijsten T.E., Peppelenbosch M.P., et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in Hidradenitis suppurativa. J. Crohns. Colitis. 2016; 10(9): 1067-75. https://doi.org/10.1093/ecco-jcc/jjw070

57. Смирнова Г.И., Манкуте Г.Р. Микробиота кишечника и атопический дерматит у детей. Российский педиатрический журнал. 2015; 18(6): 46-53

58. Navarro-López V., Martínez-Andrés A., Ramírez-Boscá A., Ruzafa-Costas B., Núñez-Delegido E., Carrión-Gutiérrez M.A., et al. Efficacy and safety of oral administration of a mixture of probiotic strains in patients with psoriasis: A randomized controlled clinical trial. Acta. Derm. Venereol. 2019; 99(12): 1078-84. https://doi.org/10.2340/00015555-3305

59. Pona A., Haidari W., Kolli S.S., Feldman S.R. Diet and psoriasis. Dermatol. Online J. 2019; 25(2): 13030/qt1p37435s https://doi.org/10.5070/D3252042883

60. Gisondi P., Del Giglio M., Di Francesco V., Zamboni M., Girolomoni G. Weight loss improves the response of obese patients with moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine therapy: A randomized, controlled, investigator-blinded clinical trial. Am. J. Clin. Nutr. 2008; 88(5): 1242-7. https://doi.org/10.3945/ajcn.2008.26427

61. Al-Mutairi N., Nour T. The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: A randomized controlled prospective trial. Expert. Opin. Biol. Ther. 2014; 14(6): 749-56. https://doi.org/10.1517/14712598.2014.900541

62. Castaldo G., Rastrelli L., Galdo G., Molettieri P., Rotondi Aufiero F., Cereda E. Aggressive weight-loss program with a ketogenic induction phase for the treatment of chronic plaque psoriasis: A proof-of-concept, single-arm, open-label clinical trial. Nutrition. 2020; 74: 110757. https://doi.org/10.1016/j.nut.2020.110757

63. Barrea L., Megna M., Cacciapuoti S., Frias-Toral E., Fabbrocini G., Savastano S., et al. Very low-calorie ketogenic diet (VLCKD) in patients with psoriasis and obesity: an update for dermatologists and nutritionists. Crit. Rev. Food Sci. Nutr. 2020; 1-17. https://doi.org/10.1080/10408398.2020.1818053

64. Relvas M., Torres T. Pediatric psoriasis. Am. J. Clin. Dermatol. 2017; 18(6): 797-811. https://doi.org/10.1007/s40257-017-0294-9

65. De Bastiani R., Gabrielli M., Lora L., Napoli L., Tosetti C., Pirrotta E., et al. Association between coeliac disease and psoriasis: Italian primary care multicentre study. Dermatology. 2015; 230(2): 156-60. https://doi.org/10.1159/000369615

66. Michaëlsson G., Gerdén B., Hagforsen E., Nilsson B., Pihl-Lundin I., Kraaz W., et al. Psoriasis patients with antibodies to gliadin can be improved by a gluten-free diet. Br. J. Dermatol. 2000; 142(1): 44-51. https://doi.org/10.1046/j.1365-2133.2000.03240.x

67. Zamani F., Alizadeh S., Amiri A., Shakeri R., Robati M., Alimohamadi S.M., et al. Psoriasis and coeliac disease: Is there any relationship? Acta Derm. Venereol. 2010; 90(3): 295-6. https://doi.org/10.2340/00015555-0829

68. Menter A., Strober B.E., Kaplan D.H., Kivelevitch D., Prater E.F., Stoff B., et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2019; 80(4): 1029-72. https://doi.org/10.1016/j.jaad.2018.11.057


Рецензия

Для цитирования:


Макарова С.Г., Пронина И.Ю. Факторы питания в патогенезе и лечении псориаза у детей. Российский педиатрический журнал. 2021;24(5):348-355. https://doi.org/10.46563/1560-9561-2021-24-5-348-355. EDN: fkfsoz

For citation:


Makarova S.G., Pronina I.Yu. Nutritional factors in the pathogenesis and treatment of psoriasis in children. Russian Pediatric Journal. 2021;24(5):348-355. (In Russ.) https://doi.org/10.46563/1560-9561-2021-24-5-348-355. EDN: fkfsoz

Просмотров: 33


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)