Nutritional factors in the pathogenesis and treatment of psoriasis in children
https://doi.org/10.46563/1560-9561-2021-24-5-348-355
EDN: fkfsoz
Abstract
In the pathogenesis of the psoriatic disease, genetic and environmental factors play a significant role, and one of the most critical ecological influences is nutrition. At the same time, the influence of nutrition on the pathogenetic links of psoriasis is currently underestimated. The clinical guidelines for managing children and adults with psoriasis do not mention the need to consult a nutritionist and any dietary recommendations. The purpose of this literature review was to analyze current data on the role of various nutritional factors in the development of psoriatic disease, the pathogenesis of its complicated course, as well as the effectiveness of dietary interventions in the treatment of this category of patients. The analysis of sixty eight sources of literature has shown that dietary changes and the use of biologically active food supplements can have a specific effect on the complex therapy of the disease. The possibilities of diet therapy in patients with psoriasis and metabolic syndrome are also discussed. At the same time, it is evident that further research is needed to improve the evidence base for the effectiveness of nutritional methods in managing this category of patients, especially in paediatric-age patients.
Contribution:
Makarova S.G. — concept, research design, collection and processing of material, text writing, editing;
Pronina I.Yu. — collection and processing of material, text writing, editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Acknowledgement. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: October 15, 2021
Accepted: October 28, 2021
Published: November 15, 2021
About the Authors
Svetlana G. MakarovaRussian Federation
Irina Yu. Pronina
Russian Federation
MD, junior researcher at Centre for Preventive Pediatrics, nutritionist, endocrinologist
e-mail: krapchatovaiv@yandex.ru; pronina.iiu@nczd.ru
References
1. Owczarczyk-Saczonek A., Purzycka-Bohdan D., Nedoszytko B., Reich A., Szczerkowska-Dobosz A., Bartosiñska J., et al. Pathogenesis of psoriasis in the «omic» era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol. Alergol. 2020; 37(4): 452-67. https://doi.org/10.5114/ada.2020.98284
2. Kanda N., Hoashi T., Saeki H. Nutrition and psoriasis. Int. J. Mol. Sci. 2020; 21(15): 5405. https://doi.org/10.3390/ijms21155405
3. Singh S., Pradhan D., Puri P., Rames V., Aggarwal S., Nayek A., et al. Genomic alterations driving psoriasis pathogenesis. Gene. 2019; 683: 61-71. https://doi.org/10.1016/j.gene.2018.09.042
4. Roszkiewicz M., Dopytalska K., Szymańska E., Jakimiuk A., Walecka I. Environmental risk factors and epigenetic alternations in psoriasis. Ann. Agric. Environ. Med. 2020; 27(3): 335-42. https://doi.org/10.26444/aaem/112107
5. Bronckers I.M., Paller A.S., van Geel M.J., van de Kerkhof P.C., Seyger M.M. Psoriasis in Children and Adolescents: Diagnosis, Management and Comorbidities. Paediatr. Drugs. 2015; 17(5): 373-84. https://doi.org/10.1007/s40272-015-0137-1
6. Yu S., Wu X., Zhou Y., Sheng L., Jena P.K., Han D., et al. A western diet, but not a high-fat and low-sugar diet, predisposes mice to enhanced susceptibility to imiquimod-induced psoriasiform dermatitis. J. Invest. Dermatol. 2019; 139(6): 1404-7. https://doi.org/10.1016/j.jid.2018.12.002
7. Jensen P., Skov L. Psoriasis and obesity. Dermatology. 2016; 232(6): 633-9. https://doi.org/10.1159/000455840
8. Honda T., Kabashima K. Current understanding of the role of dietary lipids in the pathophysiology of psoriasis. J. Dermatol. Sci. 2019; 94(3): 314-20. https://doi.org/10.1016/j.jdermsci.2019.05.003
9. Badaoui A., Tounian P., Mahé E. Psoriasis and metabolic and cardiovascular comorbidities in children: A systematic review. Arch. Pediatr. 2019; 26(2): 86-94. https://doi.org/10.1016/j.arcped.2018.12.005
10. Rigopoulos D., Baran R., Chiheb S., Daniel C.R. 3rd., Di Chiacchio N., Gregoriou S., et al. Recommendations for the definition, evaluation, and treatment of nail psoriasis in adult patients with no or mild skin psoriasis: A dermatologist and nail expert group consensus. J. Am. Acad. Dermatol. 2019; 81(1): 228-40. https://doi.org/10.1016/j.jaad.2019.01.072
11. Myśliwiec H., Baran A., Harasim-Symbor E., Myśliwiec P., Milewska A.J., Chabowski A., et al. Serum fatty acid profile in psoriasis and its comorbidity. Arch. Dermatol. Res. 2017; 309(5): 371-80. https://doi.org/10.1007/s00403-017-1748-x
12. Kong W., Yen J.H., Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigenspecific Th1/Th17 dierentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2011; 25(5): 872-82. https://doi.org/10.1016/j.bbi.2010.09.012
13. Sawada Y., Honda T., Nakamizo S., Otsuka A., Ogawa N., Kobayashi Y., et al. Resolvin E1 attenuates murine psoriatic dermatitis. Sci. Rep. 2018; 8(1): 11873. https://doi.org/10.1038/s41598-018-30373-1
14. Xu J., Duan X., Hu F., Poorun D., Liu X, Wang X., et al. Resolvin D1 attenuates imiquimod-induced mice psoriasiform dermatitis through MAPKs and NF-B pathways. J. Dermatol. Sci. 2018; 89(2): 127-35. https://doi.org/10.1016/j.jdermsci.2017.10.016
15. Ueharaguchi Y., Honda T., Kusuba N., Hanakawa S., Adachi A., Sawada Y., et al. Thromboxane A(2) facilitates IL-17A production from V 4(+) T cells and promotes psoriatic dermatitis in mice. J. Allergy Clin. Immunol. 2018; 142(2): 680-3. https://doi.org/10.1016/j.jaci.2018.01.054
16. Schirmer C., Klein C., von Bergen M., Simon J.C., Saalbach A. Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood. 2010; 116(10): 1715-25. https://doi.org/10.1182/blood-2010-01-263509
17. Nakajima A., Kaga N., Nakanishi Y., Ohno H., Miyamoto J., Kimura I., et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 2017; 199(10): 3516-24. https://doi.org/10.4049/jimmunol.1700248
18. Bhatt B., Zeng P., Zhu H., Sivaprakasam S., Li S., Xiao H., et al. Gpr109a limits microbiota-induced IL-23 production to constrain ILC3-Mediated colonic inflammation. J. Immunol. 2018; 200(8): 2905-14. https://doi.org/10.4049/jimmunol.1701625
19. Keshari S., Wang Y., Herr D.R., Wang S.M., Yang W.C., Chuang T.H., et al. Skin cutibacterium acnes mediates fermentation to suppress the calcium phosphate-induced itching: A butyric acid derivative with potential for uremic pruritus. J. Clin. Med. 2020; 9(2): 312. https://doi.org/10.3390/jcm9020312
20. Schwarz A., Philippsen R., Schwarz T. Induction of regulatory T cells and correction of cytokine disbalance by short-chain fatty acids: Implications for psoriasis therapy. J. Invest. Dermatol. 2021; 141(1): 95-104.e2. https://doi.org/10.1016/j.jid.2020.04.031
21. Krejner A., Bruhs A., Mrowietz U., Wehkamp U., Schwarz T., Schwarz A. Decreased expression of G-protein-coupled receptors GPR43 and GPR109a in psoriatic skin can be restored by topical application of sodium butyrate. Arch. Dermatol. Res. 2018; 310(9): 751-8. https://doi.org/10.1007/s00403-018-1865-1
22. Leon Carrion S., Sutter C.H., Sutter T.R. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation. Exp. Dermatol. 2014; 23(3): 211-4. https://doi.org/10.1111/exd.12333
23. Afifi L., Danesh M.J., Lee K.M., Beroukhim K., Farahnik B., Ahn R.S., et al. Dietary behaviors in psoriasis: Patient-reported outcomes from a U.S. National Survey. Dermatol. Ther. (Heidelb.). 2017; 7(2): 227-42. https://doi.org/10.1007/s13555-017-0183-4
24. Sohrabi M., Alahgholi-Hajibehzad M., Gholami Mahmoodian Z., Hosseini Siyar S.A., Zamani A. Effect of cinnamon and turmeric aqueous extracts on serum Interleukin-17F level of high fructose-fed rats. Iran. J. Immunol. 2018; 15(1): 38-46.
25. Shi Z., Wu X., Yu S., Huynh M., Jena P.K., Nguyen M., et al. Short-term exposure to a western diet induces psoriasiform dermatitis by promoting accumulation of IL-17A-Producing T Cells. J. Investig. Dermatol. 2020; 140(9): 1815-23. https://doi.org/10.1016/j.jid.2020.01.02
26. Agus A., Denizot J., Thévenot J., Martinez-Medina M., Massier S., Sauvanet P., et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 2016; 6: 19032. https://doi.org/10.1038/srep19032
27. Wahlström A., Sayin S.I., Marschall H.U., Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016; 24(1): 41-50. https://doi.org/10.1016/j.cmet.2016.05.005
28. Kuo S.M. The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv. Nutr. 2013; 4(1): 16-28. https://doi.org/10.3945/an.112.003046
29. Nofrarías M., Martínez-Puig D., Pujols J., Majó N., Pérez J.F. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 2007; 23(11-12): 861-70. https://doi.org/10.1016/j.nut.2007.08.016
30. Takahashi M., Takahashi K., Abe S., Yamada K., Suzuki M., Masahisa M., et al. Improvement of psoriasis by alteration of the gut environment by oral administration of fucoidan from Cladosiphon okamuranus. Mar. Drugs. 2020; 18(3): 154. https://doi.org/10.3390/md18030154
31. Kechichian E., Ezzedine K. Vitamin D and the skin: An update for dermatologists. Am. J. Clin. Dermatol. 2018; 19(2): 223-35. https://doi.org/10.1007/s40257-017-0323-8
32. Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutel’yan V.A. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Voprosy pitaniya. 2017; 86(4): 113–24. https://doi.org/10.24411/0042-88 (in Russian)
33. Osmancevic A., Landin-Wilhelmsen K., Larkö O., Wennberg A.M., Krogstad A.L. Vitamin D production in psoriasis patients increases less with narrowband than with broadband ultraviolet B phototherapy. Photodermatol. Photoimmunol. Photomed. 2009; 25(3): 119-23. https://doi.org/10.1111/j.1600-0781.2009.00418.x
34. Smirnova G.I., Rumyantsev R.E. Vitamin D and allergic diseases in children. Rossiyskiy pediatricheskiy zhurnal. 2017; 20(3): 166–72. https://doi.org/10.46563/1560-9561-2017-20-3-166-172
35. Anderson J., Do L.A.H., Toh Z.Q., Hoe E., Reitsma A., Mulholland K., et al. Vitamin D induces differential effects on inflammatory responses during bacterial and/or viral stimulation of human peripheral blood mononuclear cells. Front. Immunol. 2020; 11: 602. https://doi.org/10.3389/fimmu.2020.00602
36. Ni C., Gan X., Li X., Sun H., Chen Z., Lu H. Vitamin D alleviates acute graft-versus-host disease through promoting the generation of Foxp3(+) T cells. Ann. Transl. Med. 2019; 7(23): 748. https://doi.org/10.21037/atm.2019.11.102
37. van de Lagemaat E.E., de Groot L., van den Heuvel E. Vitamin B(12) in relation to oxidative stress: A systematic review. Nutrients. 2019; 11(2): 482. https://doi.org/10.3390/nu11020482
38. Yamashiki M., Nishimura A., Kosaka Y. Effects of methylcobalamin (vitamin B12) on in vitro cytokine production of peripheral blood mononuclear cells. J. Clin. Lab. Immunol. 1992; 37(4): 173-82.
39. Del Duca E., Farnetani F., De Carvalho N., Bottoni U., Pellacani G., Nisticò S.P. Superiority of a vitamin B(12)-containing emollient compared to a standard emollient in the maintenance treatment of mild-to-moderate plaque psoriasis. Int. J. Immunopathol. Pharmacol. 2017; 30(4): 439-44. https://doi.org/10.1177/0394632017736674
40. Baker H., Comaish J.S. Is vitamin B12 of value in psoriasis? Br. Med. J. 1962; 2(5321): 1729-30. https://doi.org/10.1136/bmj.2.5321.1729
41. Reichrath J., Lehmann B., Carlberg C., Varani J., Zouboulis C.C. Vitamins as hormones. Horm. Metab. Res. 2007; 39(2): 71-84. https://doi.org/10.1055/s-2007-958715
42. Khalil S., Bardawil T., Stephan C., Darwiche N., Abbas O., Kibbi A.G., et al. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J. Dermatolog. Treat. 2017; 28(8): 684-96. https://doi.org/10.1080/09546634.2017.1309349
43. Kang S.G., Lim H.W., Andrisani O.M., Broxmeyer H.E., Kim C.H. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007; 179(6): 3724-33. https://doi.org/10.4049/jimmunol.179.6.3724
44. Xiao S., Jin H., Korn T., Liu S.M., Oukka M., Lim B., et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 2008; 181(4): 2277-84. https://doi.org/10.4049/jimmunol.181.4.2277
45. Yamashita H., Morita T., Ito M., Okazaki S., Koto M., Ichikawa Y., et al. Dietary habits in Japanese patients with psoriasis and psoriatic arthritis: Low intake of meat in psoriasis and high intake of vitamin A in psoriatic arthritis. J. Dermatol. 2019; 46(9): 759-69. https://doi.org/10.1111/1346-8138.15032
46. Pazyar N., Yaghoobi R. Soybean: A potential antipsoriasis agent. Jundishapur J. Nat. Pharm. Prod. 2015; 10(1): e20924. https://doi.org/10.17795/jjnpp-20924
47. Wang A., Wei J., Lu C., Chen H., Zhong X., Lu Y., et al. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-B-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019; 69: 270-8. https://doi.org/10.1016/j.intimp.2019.01.054
48. Smolińska E., Węgrzyn G., Gabig-Cimińska M. Genistein modulates gene activity in psoriatic patients. Acta Biochim. Pol. 2019; 66(1): 101-10. https://doi.org/10.18388/abp.2018_2772
49. Youn H.S., Lim H.J., Choi Y.J., Lee J.Y., Lee M.Y., Ryu J.H. Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int. Immunopharmacol. 2008; 8(3): 495-501. https://doi.org/10.1016/j.intimp.2007.12.008
50. Wacewicz M., Socha K., Soroczyńska J., Niczyporuk M., Aleksiejczuk P., Ostrowska J., et al. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study. J. Trace Elem. Med. Biol. 2017; 44: 109-14. https://doi.org/10.1016/j.jtemb.2017.06.008
51. Constante M., Fragoso G., Calvé A., Samba-Mondonga M., Santos M.M. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front. Microbiol. 2017; 8: 1809. https://doi.org/10.3389/fmicb.2017.01809
52. Alesa D.I., Alshamrani H.M., Alzahrani Y.A., Alamssi D.N., Alzahrani N.S., Almohammadi M.E. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J. Family Med. Prim. Care. 2019; 8(11): 3496-503. https://doi.org/10.4103/jfmpc.jfmpc_709_19
53. Ogawa M., Saiki A., Matsui Y., Tsuchimoto N., Nakakita Y., Takata Y., et al. Effects of oral intake of heat-killed Lactobacillus brevis SBC8803 (SBL88™) on dry skin conditions: A randomized, double-blind, placebo-controlled study. Exp. Ther. Med. 2016; 12(6): 3863-72. https://doi.org/10.3892/etm.2016.3862
54. Guéniche A., Benyacoub J., Buetler T.M., Smola H., Blum S. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur. J. Dermatol. 2006; 16(5): 511-7.
55. Scher J.U., Ubeda C., Artacho A., Attur M., Isaac S., Reddy S.M., et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015; 67(1): 128-39. https://doi.org/10.1002/art.38892
56. Eppinga H., Sperna Weiland C.J., Thio H.B., van der Woude C.J., Nijsten T.E., Peppelenbosch M.P., et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in Hidradenitis suppurativa. J. Crohns. Colitis. 2016; 10(9): 1067-75. https://doi.org/10.1093/ecco-jcc/jjw070
57. Smirnova G.I., Mankute G.R. Intestinal microbiota and atopic dermatitis in children. Rossiyskiy pediatricheskiy zhurnal. 2015; (6): 46–53. https://doi.org/10.46563/1560-9561-2015-18-6-46-53 (in Russian)
58. Navarro-López V., Martínez-Andrés A., Ramírez-Boscá A., Ruzafa-Costas B., Núñez-Delegido E., Carrión-Gutiérrez M.A., et al. Efficacy and safety of oral administration of a mixture of probiotic strains in patients with psoriasis: A randomized controlled clinical trial. Acta. Derm. Venereol. 2019; 99(12): 1078-84. https://doi.org/10.2340/00015555-3305
59. Pona A., Haidari W., Kolli S.S., Feldman S.R. Diet and psoriasis. Dermatol. Online J. 2019; 25(2): 13030/qt1p37435s https://doi.org/10.5070/D3252042883
60. Gisondi P., Del Giglio M., Di Francesco V., Zamboni M., Girolomoni G. Weight loss improves the response of obese patients with moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine therapy: A randomized, controlled, investigator-blinded clinical trial. Am. J. Clin. Nutr. 2008; 88(5): 1242-7. https://doi.org/10.3945/ajcn.2008.26427
61. Al-Mutairi N., Nour T. The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: A randomized controlled prospective trial. Expert. Opin. Biol. Ther. 2014; 14(6): 749-56. https://doi.org/10.1517/14712598.2014.900541
62. Castaldo G., Rastrelli L., Galdo G., Molettieri P., Rotondi Aufiero F., Cereda E. Aggressive weight-loss program with a ketogenic induction phase for the treatment of chronic plaque psoriasis: A proof-of-concept, single-arm, open-label clinical trial. Nutrition. 2020; 74: 110757. https://doi.org/10.1016/j.nut.2020.110757
63. Barrea L., Megna M., Cacciapuoti S., Frias-Toral E., Fabbrocini G., Savastano S., et al. Very low-calorie ketogenic diet (VLCKD) in patients with psoriasis and obesity: an update for dermatologists and nutritionists. Crit. Rev. Food Sci. Nutr. 2020; 1-17. https://doi.org/10.1080/10408398.2020.1818053
64. Relvas M., Torres T. Pediatric psoriasis. Am. J. Clin. Dermatol. 2017; 18(6): 797-811. https://doi.org/10.1007/s40257-017-0294-9
65. De Bastiani R., Gabrielli M., Lora L., Napoli L., Tosetti C., Pirrotta E., et al. Association between coeliac disease and psoriasis: Italian primary care multicentre study. Dermatology. 2015; 230(2): 156-60. https://doi.org/10.1159/000369615
66. Michaëlsson G., Gerdén B., Hagforsen E., Nilsson B., Pihl-Lundin I., Kraaz W., et al. Psoriasis patients with antibodies to gliadin can be improved by a gluten-free diet. Br. J. Dermatol. 2000; 142(1): 44-51. https://doi.org/10.1046/j.1365-2133.2000.03240.x
67. Zamani F., Alizadeh S., Amiri A., Shakeri R., Robati M., Alimohamadi S.M., et al. Psoriasis and coeliac disease: Is there any relationship? Acta Derm. Venereol. 2010; 90(3): 295-6. https://doi.org/10.2340/00015555-0829
68. Menter A., Strober B.E., Kaplan D.H., Kivelevitch D., Prater E.F., Stoff B., et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2019; 80(4): 1029-72. https://doi.org/10.1016/j.jaad.2018.11.057
Review
For citations:
Makarova S.G., Pronina I.Yu. Nutritional factors in the pathogenesis and treatment of psoriasis in children. Russian Pediatric Journal. 2021;24(5):348-355. (In Russ.) https://doi.org/10.46563/1560-9561-2021-24-5-348-355. EDN: fkfsoz