Preview

Russian Pediatric Journal

Advanced search

Radiologic diagnostics of the orbital trauma in children

https://doi.org/10.46563/1560-9561-2025-28-2-108-113

EDN: dsnkzx

Abstract

Relevance. Head and facial injuries are one of the main reasons for emergency care in children. Among all cases of blunt trauma to the skull and face, orbital damage, including fractures of the orbital walls, stands out in particular. The aim is to determine the diagnostic significance of modern methods for visualizing the state of the orbits in children with blunt trauma. The review uses PubMed, Google Scholar, Medline, and RSCI databases.

An urgent and reliable assessment of damage to the orbit and eyeball in children is extremely important. Common imaging techniques for the orbit and eye include radiography, ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). Ultrasound is applicable for isolated injury of the orbit in specialized ophthalmological centers, except in cases where there is a suspicion of rupture of the eyeball. Due to the low information content and accessibility, CT and radiography are rarely used nowadays. In case of acute orbital trauma, any suspicion of the possibility of a foreign body in orbit requires an initial CT assessment to exclude a metallic foreign body. MRI plays a significant role in recognizing damage to the soft tissues of the orbit in children, as well as all other intracranial injuries caused by trauma. MRI allows comprehensive data that significantly expands diagnostic capabilities compared to CT, providing more information to the radiologist and the orbital surgeon. It is extremely important that specialists are aware of these imaging capabilities, as these techniques are constantly evolved and used in assessing and treating orbital injuries, as well as in planning surgical intervention in children.

Contribution:
Ochilov A.R., Akhadov T.A. — concept and design of the study;
Ochilov A.R., Akhadov T.A., Timofeeva A.V. — collection and processing of the material, writing the text;
Akhadov T.A., Ublinsky M.V. — editing the text.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: February 12, 2025
Accepted: March 18, 2025
Published: April 29, 2025

About the Authors

Amir R. Ochilov
Research Institute of Emergency Pediatric Surgery and Traumatology — Dr. Roshal’s Clinic
Russian Federation

Junior researcher, Clinical and Research Institute of Emergency Pediatric Surgery and Trauma — Dr. Roshal’s Clinic, Moscow, 119180, Russian Federation

e-mail: ochilovar@zdrav.mos.ru



Anna V. Timofeeva
Research Institute of Emergency Pediatric Surgery and Traumatology — Dr. Roshal’s Clinic
Russian Federation


Tolibdzhon A. Akhadov
Research Institute of Emergency Pediatric Surgery and Traumatology — Dr. Roshal’s Clinic
Russian Federation


Maxim V. Ublinskiy
Research Institute of Emergency Pediatric Surgery and Traumatology — Dr. Roshal’s Clinic
Russian Federation


References

1. Paek S.H., Jung J.H., Kwak Y.H., Kim D.K., Lee J.H., Jung J.Y., et al. Clinical decision rule to identify orbital wall fracture among children: retrospective derivation and validation study. Pediatr. Emerg. Care. 2020; 36(5): e280–4. https://doi.org/10.1097/PEC.0000000000001300

2. Scolozzi P., Jacquier P., Courvoisier D.S. Can clinical findings predict orbital fractures and treatment decisions in patients with orbital trauma? Derivation of a simple clinical model. J. Craniofac. Surg. 2017; 28(7): e661–7. https://doi.org/10.1097/SCS.0000000000003823

3. Shah S.M., Shah M.A., Singh R., Rathod C., Khanna R. A prospective cohort study on the epidemiology of ocular trauma associated with closed-globe injuries in pediatric age group. Indian J. Ophthalmol. 2020; 68(3): 500–3. https://doi.org/10.4103/ijo.IJO_463_19

4. Gundorova R.A., Neroev V.V., Kashnikov V.V. Eye Injuries [Travmy Glaza]. Moscow: GEOTAR-Media; 2014. https://elibrary.ru/krhure (in Russian)

5. Gromakina E.V., Saidzhamolov K.M., Moses V.G., Tyunina N.V., Moses K.B. Оpen globe injury in children: epidemiology and predictors of an adverse outcome. Fundamentalnaya i klinicheskaya meditsina. 2021; 6(4): 132–41. https://doi.org/10.23946/2500-0764-2021-6-4-132-141 https://elibrary.ru/jpmmpr (in Russian)

6. Jolly R., Arjunan M., Theodorou M., Dahlmann-Noor A.H. Eye injuries in children – incidence and outcomes: An observational study at a dedicated children’s eye casualty. Eur. J. Ophthalmol. 2019; 29(5): 499–503. https://doi.org/10.1177/1120672118803512

7. Petrayevsky A.V., Gndoyan I.A., Trishkin K.S., Vinogradov A.R. Ocular traumatism in Russian Federation. Vestnik oftalmologii. 2018; 134(4): 80–3. https://doi.org/10.17116/oftal-ma201813404180 https://elibrary.ru/uxazqa (in Russian)

8. Puodžiuvienė E., Jokūbauskienė G., Vieversytė M., Asselineau K. A five-year retrospective study of the epidemiological characteristics and visual outcomes of pediatric ocular trauma. BMC Ophthalmol. 2018; 18(1): 10. https://doi.org/10.1186/s12886-018-0676-7

9. Rêgo I.C.Q., Vilarinho S.M.M., Rodrigues C.K.F., Correia P.V.A.R., Junqueira J.L.C., Oliveira L.B. Oral and cranio-maxillofacial trauma in children and adolescents in an emergency setting at a Brazilian hospital. Dent. Traumatol. 2020; 36(2): 167–73. https://doi.org/10.1111/edt.12515

10. Wusiman P., Maimaitituerxun B., Guli, Saimaiti A., Moming A. Epidemiology and pattern of oral and maxillofacial trauma. J. Craniofac. Surg. 2020; 31(5): 517–20. https://doi.org/10.1097/SCS.0000000000006719

11. Orlova N.A., Gavrilova T.V., Sobyanin N.A. Characteristics of eye injuries in urgently hospitalized adults in the Perm region. Glaz. 2020; 22(3): 19–22. https://doi.org/10.33791/2222-4408-2020-3-19-22 https://elibrary.ru/vafywu (in Russian)

12. Kuhn F., Morris R., Witherspoon C.D., Heimann K., Jeffers J.B., Treister G.A. Standardized classification of ocular trauma. Ophthalmology. 1996; 103(2): 240–3. https://doi.org/10.1016/s0161-6420(96)30710-0

13. Neinstein R.M., Phillips J.H., Forrest C.R. Pediatric orbital floor trapdoor fractures: outcomes and CT-based morphologic assessment of the inferior rectus muscle. J. Plast. Reconstr. Aesthet. Surg. 2012; 65(7): 869–74. https://doi.org/10.1016/j.bjps.2012.02.004

14. Allison J.R., Kearns A., Banks R.J. Predicting orbital fractures in head injury: a preliminary study of clinical findings. Emerg. Radiol. 2020; 27(1): 31–6. https://doi.org/10.1007/s10140-019-01720-0

15. Miller A.F., Elman D.M., Aronson P.L., Kimia A.A., Neuman M.I. Epidemiology and predictors of orbital fractures in children. Pediatr. Emerg. Care. 2018; 34(1): 21–4. https://doi.org/10.1097/PEC.0000000000001306

16. Drozdova E.A., Bukharina E.S., Sirotkina I.A. Epidemiology, classification, symptoms, diagnosis fractures orbit with blunt trauma. Prakticheskaya meditsina. 2012; 59(4-2): 162–7. https://elibrary.ru/pchgoz (in Russian)

17. Golavskiy P.I., Pylkov A.I., Gorodkov Zh.E., Shternis T.A., Malkov N.V. Clinical and statistical analysis of maxillofacial trauma in Kuzbass. Klinicheskaya stomatologiya. 2021; 24(4): 114–21. https://doi.org/10.37988/1811-153X_2021_4_114 https://elibrary.ru/frgovf (in Russian)

18. Santamaria J., Mehta A., Reed D., Blegen H., Bishop B., Davies B. Orbital roof fractures as an indicator for concomitant ocular injury. Graefes. Arch. Clin. Exp. Ophthalmol. 2019; 257(11): 2541–5. https://doi.org/10.1007/s00417-019-04455-3

19. Nguyen B.N., Edwards M.J., Srivatsa S., Wakeman D., Calderon T., Lamoshi A., et al. Clinical and radiographic predictors of the need for facial CT in pediatric blunt trauma: a multi-institutional study. Trauma Surg. Acute Care Open. 2022; 7(1): e000899. https://doi.org/10.1136/tsaco-2022-000899

20. Takahashi Y., Nakakura S., Sabundayo M.S., Kitaguchi Y., Miyazaki H., Mito H., et al. Differences in common orbital blowout fracture sites by age. Plast. Reconstr. Surg. 2018; 141(6): 893–901. https://doi.org/10.1097/PRS.0000000000004397

21. Haavisto A.K., Sahraravand A., Puska P., Leivo T. Toy gun eye injuries – eye protection needed Helsinki ocular trauma study. Acta Ophthalmol. 2019; 97(4): 430–4. https://doi.org/10.1111/aos.13948

22. Xue C., Yang L.C., Kong Y.C. Application of pediatric ocular trauma score in pediatric open globe injuries. Int. J. Ophthalmol. 2020; 13(7): 1097–101. https://doi.org/10.18240/ijo.2020.07.13

23. Jank S., Emshoff R., Etzelsdorfer M., Strobl H., Nicasi A., Norer B. The diagnostic value of ultrasonography in the detection of orbital floor fractures with a curved array transducer. Int. J. Oral. Maxillofac. Surg. 2004; 33(1): 13–8. https://doi.org/10.1054/ijom.2003.0456

24. Jank S., Emshoff R., Etzelsdorfer M., Strobl H., Nicasi A., Norer B. Ultrasound versus computed tomography in the imaging of orbital floor fractures. J. Oral. Maxillofac. Surg. 2004; 62(2): 150–4. https://doi.org/10.1016/j.joms.2003.01.004

25. Wang L., Wang J. On the positive correlation between the percentage of acute fracture of medial orbital wall and the degree of injury of affected medial rectus muscle by CT image. Eur. J. Radiol. 2012; 81(1): 58–61. https://doi.org/10.1016/j.ejrad.2011.01.011

26. Lynham A.J., Chapman P.J., Monsour F.N., Snape L., Courtney D.J., Heggie A.A., et al. Management of isolated orbital floor blow-out fractures: a survey of Australian and New Zealand oral and maxillofacial surgeons. Clin. Exp. Ophthalmol. 2004; 32(1): 42–5. https://doi.org/10.1046/j.1442-9071.2004.00755.x

27. Lezhnev D.A., Serova N.S., Truten V.P. Role of radiologic vizualization methods in diagnostics of isolated face trauma. Vestnik Rossiyskoy voenno-meditsinskoy akademii. 2008; (2): 66–8. https://elibrary.ru/jwenzl (in Russian)

28. Pavlova O.Yu., Serova N.S. Multislice computed tomography in the diagnosis of orbital fractures. Vestnik rentgenologii i radiologii. 2015; (3): 12–7. https://elibrary.ru/ucbdrb (in Russian)

29. Dreizin D., Nam A.J., Hirsch J., Bernstein M.P. New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma. Emerg. Radiol. 2018; 25(5): 533–45. https://doi.org/10.1007/s10140-018-1616-9

30. Gómez Roselló E., Quiles Granado A.M., Artajona Garcia M., Juanpere Martí S., Laguillo Sala G., Beltrán Mármol B., et al. Facial fractures: classification and highlights for a useful report. Insights. Imaging. 2020; 11(1): 49. https://doi.org/10.1186/s13244-020-00847-w

31. Kunz C., Sigron G.R., Jaquiéry C. Functional outcome after non-surgical management of orbital fractures – the bias of decision-making according to size of defect: critical review of 48 patients. Br. J. Oral. Maxillofac. Surg. 2013; 51(6): 486–92. https://doi.org/10.1016/j.bjoms.2012.09.016

32. Ryu J., Yun S.J., Lee S.H., Choi Y.H. Screening of pediatric facial fractures by brain computed tomography: diagnostic performance comparison with facial computed tomography. Pediatr. Emerg. Care. 2020; 36(3): 125–9. https://doi.org/10.1097/PEC.0000000000001397

33. Lezhnev D.A., Petrovskaya V.V. Modern radiological trends in dentistry and maxillofacial surgery (lecture). Radiologiya-Praktika. 2019; (5): 57–73. https://elibrary.ru/gpwmth (in Russian)

34. Ball J.B. Jr. Direct oblique sagittal CT of orbital wall fractures. AJR Am. J. Roentgenol. 1987; 148(3): 601–8. https://doi.org/10.2214/ajr.148.3.601

35. Rake P.A., Rake S.A., Swift J.Q., Schubert W. A single reformatted oblique sagittal view as an adjunct to coronal computed tomography for the evaluation of orbital floor fractures. J. Oral. Maxillofac. Surg. 2004; 62(4): 456–9. https://doi.org/10.1016/j.joms.2003.05.017

36. Joseph J.M., Glavas I.P. Orbital fractures: a review. Clin. Ophthalmol. 2011; (5): 95–100. https://doi.org/10.2147/OPTH.S14972

37. Lee S.H., Yun S.J., Ryu S., Choi S.W., Kim H.J., Kang T.K., et al. Brain computed tomography compared with facial 3-dimensional computed tomography for diagnosis of facial fractures. J. Pediatr. 2017; 184: 32–7. https://doi.org/10.1016/j.jpeds.2017.01.036

38. Jamal B.T., Pfahler S.M., Lane K.A., Bilyk J.R., Pribitkin E.A., Diecidue R.J., et al. Ophthalmic injuries in patients with zygomaticomaxillary complex fractures requiring surgical repair. J. Oral. Maxillofac. Surg. 2009; 67(5): 986–9. https://doi.org/10.1016/j.joms.2008.12.035

39. Cellina M., Floridi C., Panzeri M., Giancarlo O. The role of computed tomography (CT) in predicting diplopia in orbital blowout fractures (BOFs). Emerg. Radiol. 2018; 25(1): 13–9. https://doi.org/10.1007/s10140-017-1551-1

40. Roelofs K.A., Starks V., Yoon M.K. Orbital emphysema: a case report and comprehensive review of the literature. Ophthalmic. Plast. Reconstr. Surg. 2019; 35(1): 1–6. https://doi.org/10.1097/IOP.0000000000001216

41. Huang L.K., Tu H.F., Jiang L.D., Chen Y.Y., Fu C.Y. Evaluation of concomitant orbital floor fractures in patients with head trauma using conventional head CT scan: a retrospective study at a level II trauma center. J. Clin. Med. 2019; 8(11): 1852. https://doi.org/10.3390/jcm8111852

42. Cellina M., Cè M., Marziali S., Irmici G., Gibelli D., Oliva G., et al. Computed tomography in traumatic orbital emergencies: a pictorial essay-imaging findings, tips, and report flowchart. Insights Imaging. 2022; 13(1): 4. https://doi.org/10.1186/s13244-021-01142-y

43. Dubois L., Steenen S.A., Gooris P.J., Mourits M.P., Becking A.G. Controversies in orbital reconstruction – I. Defect-driven orbital reconstruction: a systematic review. Int. J. Oral. Maxillofac. Surg. 2015; 44(3): 308–15. https://doi.org/10.1016/j.ijom.2014.12.002

44. Folkestad L., Jönsson L., Karlsson T. Orbital floor fractures – a comparison between CT images and findings at surgery. Eur. Arch. Otorhinolaryngol. 2023; 280(6): 2795–803. https://doi.org/10. 1007/s00405-022-07801-0

45. Schmutz B., Rahmel B., McNamara Z., Coulthard A., Schuetz M., Lynham A. Magnetic resonance imaging: An accurate, radiation-free, alternative to computed tomography for the primary imaging and three-dimensional reconstruction of the bony orbit. J. Oral. Maxillofac. Surg. 2014; 72(3): 611–8. https://doi.org/10.1016/j.joms.2013.08.030

46. Wiener E., Kolk A., Neff A., Settles M., Rummeny E. Evaluation of reconstructed orbital wall fractures: High-resolution MRI using a microscopy surface coil versus 16-slice MSCT. Eur. Radiol. 2005; 15(6): 1250–55. https://doi.org/10.1007/s00330-005-2660-x

47. Damgaard O.E., Larsen C.G., Felding U.A., Toft P.B., von Buchwald C. Surgical timing of the orbital “Blowout” fracture: a systematic review and meta-analysis. Otolaryngol. Head Neck Surg. 2016; 155(3): 387–90. https://doi.org/10.1177/0194599816647943

48. Coon D., Yuan N., Jones D., Howell L.K., Grant M.P., Redett R.J. Defining pediatric orbital roof fractures: patterns, sequelae, and indications for operation. Plast. Reconstr. Surg. 2014; 134(3): 442–8. https://doi.org/10.1097/PRS.0000000000000421

49. Passi N., Degnan A.J., Levy L.M. MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms. AJNR Am. J. Neuroradiol. 2013; 34(5): 919–24. https://doi.org/10.3174/ajnr.A3022

50. Tortora F., Cirillo M., Ferrara M., Belfiore M.P., Carella C., Caranci F., et al. Disease activity in Graves’ ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score. Neuroradiol. J. 2013; 26(5): 555–64. https://doi.org/10.1177/197140091302600509

51. Higashiyama T., Iwasa M., Ohji M. Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity. Sci. Rep. 2017; 7(1): 16874. https://doi.org/10.1038/s41598-017-17257-6

52. Das T., Roos J.C.P., Patterson A.J., Graves M.J., Murthy R. T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study. Eye (Lond.). 2019; 33(2): 235–43. https://doi.org/10.1038/s41433-018-0304-z

53. Chavhan G.B., Babyn P.S., Thomas B., Shroff M.M., Haacke E.M. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009; 29(5): 1433–49. https://doi.org/10.1148/rg.295095034

54. Galluzzi P., Hadjistilianou T., Cerase A., De Francesco S., Toti P., Venturi C. Is CT still useful in the study protocol of retinoblastoma? AJNR Am. J. Neuroradiol. 2009; 30(9): 1760–65. https://doi.org/10.3174/ajnr.A1716

55. Garcia-Carpintero A.S.M., Petcharunpaisan S., Ramalho J.P.R.S.N.P., Castillo M. Advances in pediatric orbital magnetic resonance imaging. Expert Rev. Ophthalmol. 2010; 5(4): 483–500. https://doi.org/10.1586/eop.10.46

56. Murumkar V., Priyadarshini Baishya P., Kulanthaivelu K., Saini J., Manjunath N., Kumar Gupta R. Comparison of 3D Double Inversion Recovery (DIR) versus 3D fluid attenuated inversion recovery (FLAIR) in precise diagnosis of acute optic neuritis. Eur. J. Radiol. 2022; 155: 110505. https://doi.org/10.1016/j.ejrad.2022.110505

57. Hemat E.M. Characterization of orbital masses by diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) value. Egypt. J. Radiol. Nucl. Med. 2017; 48(1): 115–23. https://doi.org/10.1016/j.ejrnm.2016.10.003

58. van Everdingen K.J., van der Grond J., Kappelle L.J., Ramos L.M., Mali W.P. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 1998; 29(9): 1783–90. https://doi.org/10.1161/01.str.29.9.1783

59. Seitz J., Held P., Strotzer M., Müller M., Völk M., Lenhart M., et al. Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences. J. Neuroimaging. 2002; 12(2): 164–71. https://doi.org/10.1111/j.1552-6569.2002.tb00115.x

60. Yazici Z., Yazici B., Tuncel E. Findings of magnetic resonance imaging after optic nerve sheath decompression in patients with idiopathic intracranial hypertension. Am. J. Ophthalmol. 2007; 144(3): 429–35. https://doi.org/10.1016/j.ajo.2007.05.034


Review

For citations:


Ochilov A.R., Timofeeva A.V., Akhadov T.A., Ublinskiy M.V. Radiologic diagnostics of the orbital trauma in children. Russian Pediatric Journal. 2025;28(2):108-113. (In Russ.) https://doi.org/10.46563/1560-9561-2025-28-2-108-113. EDN: dsnkzx

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-9561 (Print)
ISSN 2413-2918 (Online)