Visualization of osteochondral fragments in the cavity of the knee joint in case of patellar dislocation in children
https://doi.org/10.46563/1560-9561-2021-24-5-317-322
EDN: wbjdot
Abstract
The objective was to assess the capabilities of MRI and CT in visualizing free bone and cartilage fragments in the knee cavity after lateral dislocation of the patella.
Materials and methods. CT and MRI were performed in 220 patients, including 127 girls and 93 boys aged 12 to 18 years (mean age 14.5 years), with acute lateral patellar dislocation.
Results. Lateral dislocation of the patella in 25% of cases led to the appearance of osteochondral fragments. CT scan revealed and confirmed osteochondral fragments surgery in 55 people (100%), MRI scan — in 50 people (90%). The sites of the detachment of the osteochondral fragments were: a medial facet of the patella in 22 (38.8%), the outer edge of femur lateral condyle in 33 (58.2%), t patella and lateral condyle of the femur in 2 patients (3%). Free cartilage fragments not detected by CT were detected by MRI in 2 patients.
Conclusion. Patellar dislocation is an injury that is likely to require surgery. The volume of osteochondral and soft tissue lesions can be established with the maximum degree of probability by MRI while detecting small osteochondral fragments is most reliable with CT. Combining these two observation methods provides the complete possible information about the extent of damage, which allows timely resolution of treatment tactics.
Contribution:
Akhadov T.A., Bozhko O.V., Melnikov I.A., Valiullina S.A. — research concept and design;
Dmitrenko D.M., Kostikova T.D. — collection and analysis of data;
Ublinskiy M.V., Bozhko O.V. — statistical analysis;
Akhadov T.A., Bozhko O.V. — writing text;
Akhadov T.A., Bozhko O.V., Ublinskiy M.V. — editing;
Akhadov T.A., Bozhko O.V., Melnikov I.A., Valiullina S.A. — approval of the final version of the article;
Akhadov T.A., Bozhko O.V. — responsibility for the integrity of all parts of the article.
Acknowledgement. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: September 20, 2021
Accepted: October 28, 2021
Published: November 15, 2021
About the Authors
Olga V. BozhkoRussian Federation
Tolibdzhon A. Akhadov
Russian Federation
Ilya A. Melnikov
Russian Federation
Dmitry M. Dmitrenko
Russian Federation
Tatyana D. Kostikova
Russian Federation
Maxim V. Ublinskiy
Russian Federation
MD, PhD, radiologist, scientific researcher, Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, 119180, Russian Federation
e-mail: axublinsk@mail.ru
Svetlana A. Valiullina
Russian Federation
Denis A. Vorobyev
Russian Federation
References
1. Seeley M.A., Knesek M., Vanderhave K.L. Osteochondral injury after acute patellar dislocation in children and adolescents. J. Pediatr. Orthop. 2013; 33(5): 511-8. https://doi.org/10.1097/BPO.0b013e318288b7a0
2. Nomura E., Inoue M., Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003; 19(7): 717-21. https://doi.org/10.1016/s0749-8063(03)00401-8
3. Zaidi A., Babyn P., Astori I., White L., Doria A., Cole W. MRI of traumatic patellar dislocation in children. Pediatr. Radiol. 2006; 36(11): 1163-70. https://doi.org/10.1007/s00247-006-0293-0
4. Franzone J.M., Vitale M.A., Shubin Stein B.E., Ahmad C.S. Is there an association between chronicity of patellar instability and patellofemoral cartilage lesions? An arthroscopic assessment of chondral injury. J. Knee. Surg. 2012; 25(5): 411-6. https://doi.org/10.1055/s-0032-1313747
5. Elias D.A., White L.M., Fithian D.C. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002; 225(3): 736-43. https://doi.org/10.1148/radiol.2253011578
6. Guerrero P., Li X., Patel K., Brown M., Busconi B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009; 1(1): 17. https://doi.org/10.1186/1758-2555-1-17
7. Laires P.A., Gouveia M., Canhao H., Rodrigues A., Gouveia N., Eusebio M., et al. Years of working life lost caused by osteoarthritis in Portugal. Value Health. 2015; 18(7): A642. https://doi.org/10.1016/j.jval.2015.09.2294
8. Gudas R., Simonaityte R., Cekanauskas E., Tamosiūnas R. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J. Pediatr. Orthop. 2009; 29(7): 741-8. https://doi.org/10.1097/BPO.0b013e3181b8f6c7
9. Lee B.J., Christino M.A., Daniels A.H., Hulstyn M.J., Eberson C.P. Adolescent patellar osteochondral fracture following patellar dislocation. Knee Surg. Sports. Traumatol. Arthrosc. 2013; 21(8): 1856-61. https://doi.org/10.1007/s00167-012-2179-z
10. Chotel F., Knorr G., Simian E., Dubrana F., Versier G. French Arthroscopy Society. Knee osteochondral fractures in skeletally immature patients: French multicenter study. Orthop. Traumatol. Surg. Res. 2011; 97(8 Suppl.): 154-9. https://doi.org/10.1016/j.otsr.2011.09.003
11. Milgram J.W., Rogers L.F., Miller J.W. Osteochondral fractures: mechanisms of injury and fate of fragments. AJR Am. J. Roentgenol. 1978; 130(4): 651-8. https://doi.org/10.2214/ajr.130.4.651
12. Stanitski C.L., Paletta G.A. Articular cartilage injury with acute patellar dislocation in adolescents. Arthroscopic and radiographic correlation. Am. J. Sports. Med. 1998; 26(1): 52-5. https://doi.org/10.1097/JSA.0b013e318259bc40
13. Bohndorf K. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol. 1999; 28(10): 545-60. https://doi.org/10.1007/s002560050618
14. Garbuniya R.I., Mironova Z.S., Mironov S.P. Computer tomography in normal and habitual patellar dislocation. Ortopediya, travmatologiya i protezirovanie. 1986; (2): 20–3. (in Russian)
15. Tavernier T., Dejour D. Knee imaging: what is the best modality. J. Radiol. 2001; 82(3 Pt. 2): 387-407. (in French)
16. Dejour H., Walch G., Nove-Josserand L., Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg. Sports. Traumatol. Arthrosc. 1994; 2(1): 19-26. https://doi.org/10.1007/BF01552649
17. Sautenko A.A., Ogarev E.V., Merkulov V.N., El’tsin A.G., Mininkov D.S. Current methods of patellar instability imaging in children. Selection of the best treatment approach. Ortopediya, travmatologiya i vosstanovitel’naya khirurgiya detskogo vozrasta. 2018; 6(2): 29–36. https://doi.org/10.17816/PTORS6229-36 (in Russian)
18. Disler D.G., McCauley T.R., Kelman C.G., Fuchs M.D., Ratner L.M., Wirth C.R., et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am. J. Roentgenol. 1996; 167(1): 127-32. https://doi.org/10.2214/ajr.167.1.8659356
Review
For citations:
Bozhko O.V., Akhadov T.A., Melnikov I.A., Dmitrenko D.M., Kostikova T.D., Ublinskiy M.V., Valiullina S.A., Vorobyev D.A. Visualization of osteochondral fragments in the cavity of the knee joint in case of patellar dislocation in children. Russian Pediatric Journal. 2021;24(5):317-322. (In Russ.) https://doi.org/10.46563/1560-9561-2021-24-5-317-322. EDN: wbjdot